ﻻ يوجد ملخص باللغة العربية
The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.
We show that the lifetime of ultracold ground-state $^{87}$Rb$^{133}$Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave m
We probe photo-induced loss for chemically stable bosonic $^{23}$Na$^{87}$Rb and $^{23}$Na$^{39}$K molecules in chopped optical dipole traps where the molecules spend a significant time in the dark. We expect the effective two-body decay to be largel
Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. Here we take the contrasting approach of prolonging the lifetime of an intermediate by preparing rea
How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single scattering partial waves, and quantum threshold laws provide a clear understanding for the molecular reactivity unde
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Alth