ﻻ يوجد ملخص باللغة العربية
We discuss the procedure for gauging on-site $mathbb{Z}_2$ global symmetries of three-dimensional lattice Hamiltonians that permute quasi-particles and provide general arguments demonstrating the non-Abelian character of the resultant gauged theories. We then apply this general procedure to lattice models of several well known fracton phases: two copies of the X-Cube model, two copies of Haahs cubic code, and the checkerboard model. Where the former two models possess an on-site $mathbb{Z}_2$ layer exchange symmetry, that of the latter is generated by the Hadamard gate. For each of these models, upon gauging, we find non-Abelian subdimensional excitations, including non-Abelian fractons, as well as non-Abelian looplike excitations and Abelian fully mobile pointlike excitations. By showing that the looplike excitations braid non-trivially with the subdimensional excitations, we thus discover a novel gapped quantum order in 3D, which we term a panoptic fracton order. This points to the existence of parent states in 3D from which both topological quantum field theories and fracton states may descend via quasi-particle condensation. The gauged cubic code model represents the first example of a gapped 3D phase supporting (inextricably) non-Abelian fractons that are created at the corners of fractal operators.
We demonstrate a general gauging procedure of a pure matter theory on a lattice with a mixture of subsystem and global symmetries. This mixed symmetry can be either a semidirect product of a subsystem symmetry and a global symmetry, or a non-trivial
The study of gapped quantum many-body systems in three spatial dimensions has uncovered the existence of quantum states hosting quasiparticles that are confined, not by energetics but by the structure of local operators, to move along lower dimension
Based on several previous examples, we summarize explicitly the general procedure to gauge models with subsystem symmetries, which are symmetries with generators that have support within a sub-manifold of the system. The gauging process can be applie
We introduce lattice gauge theories which describe three-dimensional, gapped quantum phases exhibiting the phenomenology of both conventional three-dimensional topological orders and fracton orders, starting from a finite group $G$, a choice of an Ab
A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time-dependence of such periodic driving? Here we d