ترغب بنشر مسار تعليمي؟ اضغط هنا

$d$-wave superconducting gap observed in protect-annealed electron-doped cuprate superconductors Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_{4}$

200   0   0.0 ( 0 )
 نشر من قبل Masafumi Horio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For electron-doped cuprates, the strong suppression of antiferromagnetic spin correlation by efficient reduction annealing by the protect-annealing method leads to superconductivity not only with lower Ce concentrations but also with higher transition temperatures. To reveal the nature of this superconducting state, we have performed angle-resolved photoemission spectroscopy measurements of protect-annealed electron-doped superconductors Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_{4}$ and directly investigated the superconducting gap. The gap was found to be consistent with $d$-wave symmetry, suggesting that strong electron correlation persists and hence antiferromagnetic spin fluctuations remain a candidate that mediates Copper pairing in the protect-annealed electron-doped cuprates.

قيم البحث

اقرأ أيضاً

We performed systematic angle-resolved photoemission spectroscopy measurements $in$-$situ$ on $T$-${rm La}_{2-x}{rm Ce}_xrm {CuO}_{4pmdelta}$ (LCCO) thin films over the extended doping range prepared by the refined ozone/vacuum annealing method. Elec tron doping level ($n$), estimated from the measured Fermi surface volume, varies from 0.05 to 0.23, which covers the whole superconducting dome. We observed an absence of the insulating behavior around $n sim$ 0.05 and the Fermi surface reconstruction shifted to $n sim$ 0.11 in LCCO compared to that of other electron-doped cuprates at around 0.15, suggesting that antiferromagnetism is strongly suppressed in this material. The possible explanation may lie in the enhanced -$t$ /$t$ in LCCO for the largest $rm{La^{3+}}$ ionic radius among all the Lanthanide elements.
We report on laser-excited angle-resolved photoemission spectroscopy (ARPES) in the electron-doped cuprate Sm(1.85)Ce(0.15)CuO(4-d). The data show the existence of a nodal hole-pocket Fermi-surface both in the normal and superconducting states. We pr ove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferromagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole-pocket is compatible with a d-wave symmetry.
132 - J. Q. Lin , Jie Yuan , Kui Jin 2019
Electron correlations play a dominant role in the charge dynamics of the cuprates. We use resonant inelastic x-ray scattering (RIXS) to track the doping dependence of the collective charge excitations in electron doped La$_{2-x}$Ce$_{x}$CuO$_{4}$(LCC O). From the resonant energy dependence and the out-of-plane momentum dependence, the charge excitations are identified as three-dimensional (3D) plasmons, which reflect the nature of the electronic structure and Coulomb repulsion on both short and long length scales. With increasing electron doping, the plasmon excitations show monotonic hardening in energy, a consequence of the electron correlation effect on electron structure near the Fermi surface (FS). Importantly, the plasmon excitations evolve from a broad feature into a well defined peak with much increased life time, revealing the evolution of the electrons from incoherent states to coherent quasi-particles near the FS. Such evolution marks the reduction of the short-range electronic correlation, and thus the softening of the Mottness of the system with increasing electron doping.
The London penetration depth, lambda{ab}(T), is reported for thin films of the electron-doped superconductor Pr{2-x}Ce{x}CuO{4-y} at three doping levels (x = 0.13, 0.15 and 0.17). Measurements down to 0.35 K were carried out using a tunnel diode osci llator with excitation fields applied both perpendicular and parallel to the conducting planes. For all samples and both field orientations lambda{ab}(T) showed power law behavior implying a superconducting gap with nodes.
High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essentia l to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4pmdelta} (NCCO) shows bulk superconductivity above x approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا