ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galactic spiral structure as revealed by O- and early B-type stars

415   0   0.0 ( 0 )
 نشر من قبل Bingqiu Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the morphology and kinematics of the Galactic spiral structure based on a new sample of O- and early B-type stars. We select 6,858 highly confident OB star candidates from the combined data of the VST Photometric H$alpha$ Survey Data Release 2 (VPHAS+ DR2) and the Gaia Data Release 2 (Gaia DR2). Together with the O-B2 stars from the literature, we build a sample consisting of 14,880 O- and early B-type stars, all with Gaia parallax uncertainties smaller than 20 per cent. The new sample, hitherto the largest one of O- and early B-type stars with robust distance and proper motion estimates, covers the Galactic plane of distances up to $sim$ 6 kpc from the Sun. The sample allows us to examine the morphology of the Scutum, Sagittarius, Local and Perseus Arms in great detail. The spiral structure of the Milky Way as traced by O- and early B-type stars shows flocculent patterns. Accurate structure parameters, as well as the means and dispersions of the vertical velocity distributions of the individual Spiral Arms are presented.

قيم البحث

اقرأ أيضاً

This study is an investigation of the stellar density profile of the Galactic disc in the Anticentre direction. We select over 40,000 early A stars from IPHAS photometry in the Galactic longitude range 160 < l < 200 close to the equatorial plane (-1 < b < +1). We then compare their observed reddening-corrected apparent magnitude distribution with simulated photometry obtained from parameterised models in order to set constraints on the Anticentre stellar density profile. By selecting A stars, we are appraising the properties of a population only ~100 Myrs old. We find the stellar density profile of young stars is well fit to an exponential with length scale of (3020 pm 120_{statistical} pm 180_{systematic}) pc, which is comparable to that obtained in earlier studies, out to a Galactocentric radius of R_T = (13.0 pm 0.5_{statistical} pm 0.6_{systematic}) kpc. At larger radii the rate of decline appears to increase with the scale length dropping to (1200 pm 300_{statistical} pm 70_{systematic}) pc. This result amounts to a refinement of the conclusions reached in previous studies that the stellar density profile is abruptly truncated. The IPHAS A star data are not compatible with models that propose a sudden change in metallicity at R_G = 10 kpc.
Using the astrometry and integrated photometry from the Gaia Early Data Release 3 (EDR3), we map the density variations in the distribution of young Upper Main Sequence (UMS) stars, open clusters and classical Cepheids in the Galactic disk within sev eral kiloparsecs of the Sun. Maps of relative over/under-dense regions for UMS stars in the Galactic disk are derived, using both bivariate kernel density estimators and wavelet transformations. The resulting overdensity maps exhibit large-scale arches, that extend in a clumpy but coherent way over the entire sampled volume, indicating the location of the spiral arms segments in the vicinity of the Sun. Peaks in the UMS overdensity are well-matched by the distribution of young and intrinsically bright open clusters. By applying a wavelet transformation to a sample of classical Cepheids, we find that their overdensities possibly extend the spiral arm segments on a larger scale (~10 kpc from the Sun). While the resulting map based on the UMS sample is generally consistent with previous models of the Sagittarius-Carina spiral arm, the geometry of the arms in the III quadrant (galactic longitudes $180^circ < l < 270^circ$) differs significantly from many previous models. In particular we find that our maps favour a larger pitch angle for the Perseus arm, and that the Local Arm extends into the III quadrant at least 4 kpc past the Suns position, giving it a total length of at least 8 kpc.
We present a panoptic view of the stellar structure in the Galactic disks outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = -25 and b = +35 degrees and covering over 130 degrees in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations--the tidal stream predicts material at larger distances which is not detected while in the distorted disk model the midplane is warped to an excessive degree--future tuning of the models to accommodate these latest data may yield better agreement.
182 - Junhao Liu 2020
We present 1.3 mm ALMA dust polarization observations at a resolution of $sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $sim$1.6 mG and $sim$0.32 mG, respectively. textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $sim$0.76 and $sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.
66 - Miriam Garcia 2019
With both nebular- and stellar-derived abundances of $lesssim$ 1/10 Zsun and low foreground extinction, Sextans A is a prime candidate to replace the Small Magellanic Cloud as reservoir of metal-poor massive stars and reference to study the metal-poo r Universe. We report the discovery of two early-O type stars in Sextans A, the earliest O-stars with metallicity < 1/7 Zsun known to date, and two additional O9 stars. Colour-excess estimates towards individual targets, enabled by spectral typing, manifest that internal reddening is neither uniform nor negligible. The four targets define a new region of star formation far from the optically-brightest centre of the galaxy and from its conspicuous HII shells, but not devoid of neutral hydrogen. In fact, we detect a spatial correlation between OB-stars and HI in Sextans A and other dIrrs that leads us to propose that the neutral phase may be fundamental to star formation in low-density environments. According to the existing evidence at least two of the targets formed in isolation, thus suggestive of an stochastic sampling of the initial mass function that would enable low-mass galaxies like Sextans A to form very massive stars. The discovery of these four stars provide spatially-resolved, spectroscopic confirmation of recent findings suggesting that dwarf galaxies can sustain star formation despite the low density of the gas phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا