ﻻ يوجد ملخص باللغة العربية
In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.
We explore a well-known integral representation of the logarithmic function, and demonstrate its usefulness in obtaining compact, easily-computable exact formulas for quantities that involve expectations and higher moments of the logarithm of a posit
We define a natural operation of conditioning of tropical diagrams of probability spaces and show that it is Lipschitz continuous with respect to the asymptotic entropy distance.
This paper studies several properties of channel codes that approach the fundamental limits of a given (discrete or Gaussian) memoryless channel with a non-vanishing probability of error. The output distribution induced by an $epsilon$-capacity-achie
We consider a general model of the sensorimotor loop of an agent interacting with the world. This formalises Uexkulls notion of a emph{function-circle}. Here, we assume a particular causal structure, mechanistically described in terms of Markov kerne
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis