ﻻ يوجد ملخص باللغة العربية
How popular a topic or an opinion appears to be in a network can be very different from its actual popularity. For example, in an online network of a social media platform, the number of people who mention a topic in their posts---i.e., its global popularity---can be dramatically different from how people see it in their social feeds---i.e., its perceived popularity---where the feeds aggregate their friends posts. We trace the origin of this discrepancy to the friendship paradox in directed networks, which states that people are less popular than their friends (or followers) are, on average. We identify conditions on network structure that give rise to this perception bias, and validate the findings empirically using data from Twitter. Within messages posted by Twitter users in our sample, we identify topics that appear more frequently within the users social feeds, than they do globally, i.e., among all posts. In addition, we present a polling algorithm that leverages the friendship paradox to obtain a statistically efficient estimate of a topics global prevalence from biased perceptions of individuals. We characterize the bias of the polling estimate, provide an upper bound for its variance, and validate the algorithms efficiency through synthetic polling experiments on our Twitter data. Our paper elucidates the non-intuitive ways in which the structure of directed networks can distort social perceptions and resulting behaviors.
In the past decade, blogging web sites have become more sophisticated and influential than ever. Much of this sophistication and influence follows from their network organization. Blogging social networks (BSNs) allow individual bloggers to form cont
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partitio
In a graph, a community may be loosely defined as a group of nodes that are more closely connected to one another than to the rest of the graph. While there are a variety of metrics that can be used to specify the quality of a given community, one co
Estimating distributions of node characteristics (labels) such as number of connections or citizenship of users in a social network via edge and node sampling is a vital part of the study of complex networks. Due to its low cost, sampling via a rando
Users of social media sites like Facebook and Twitter rely on crowdsourced content recommendation systems (e.g., Trending Topics) to retrieve important and useful information. Contents selected for recommendation indirectly give the initial users who