ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetics of phase separation, border of miscibility gap in Fe-Cr and limit of Cr solubility in iron at 832 K

227   0   0.0 ( 0 )
 نشر من قبل Stanislaw Dubiel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kinetics of phase decomposition accompanied by precipitation of sigma-phase in a Fe73.7Cr26.3 alloy isothermally annealed at 832 K was studied by means of Mossbauer spectroscopy. Two stage decomposition process has been revealed by three different quantities viz. the average hyperfine field, <H>, the short-range parameter, alpha1, and the probability of atomic configuration with no Cr atoms within the first two coordination shells around the probe Fe atoms, P(0,0). The first stage, that has terminated after ca.300 h of annealing, has been associated with the decomposition into Fe-rich phase in which the concentration of Cr, determined as 20.9 at.%, can be interpreted as the border of the metastable miscibility gap at 832 K. The second stage can be regarded as a continuation of the phase decomposition process combined with a precipitation of sigma. The three relevant parameters for this stage have also saturation-like behavior vs. annealing time and the saturation can be interpreted as termination of the two processes. The concentration of Cr in the Fe-rich phase has been determined as 19.8 at.% and this value can be regarded as the limit of Cr solubility in iron at 832 K. Both stages of the kinetics were found to be in line with the Johnson-Mehl-Avrami-Kolgomorov equation yielding values of the rate constant and the Avrami exponent. The activation energy of the second-stage process was determined to be by ca.12 kJ/mol higher.



قيم البحث

اقرأ أيضاً

Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Adv anced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
We report the observation of ferromagnetism at over 900K in Cr-GaN and Cr-AlN thin films. The saturation magnetization moments in our best films of Cr-GaN and Cr-AlN at low temperatures are 0.42 and 0.6 u_B/Cr atom, respectively, indicating that 14% and 20%, of the Cr atoms, respectively, are magnetically active. While Cr-AlN is highly resistive, Cr-GaN exhibits thermally activated conduction that follows the exponential law expected for variable range hopping between localized states. Hall measurements on a Cr-GaN sample indicate a mobility of 0.06 cm^2/V.s, which falls in the range characteristic of hopping conduction, and a free carrier density (1.4E20/cm^3), which is similar in magnitude to the measured magnetically-active Cr concentration (4.9E19/cm^3). A large negative magnetoresistance is attributed to scattering from loose spins associated with non-ferromagnetic impurities. The results indicate that ferromagnetism in Cr-GaN and Cr-AlN can be attributed to the double exchange mechanism as a result of hopping between near-midgap substitutional Cr impurity bands.
130 - X. W. Dong , S. Dong , K. F. Wang 2010
A series of polycrystalline pyrochlore rare-earth titanate Ho_{2-x}Cr_xTi_2O_7 are synthesized in order to enhance the ferroelectricity of pyrochlore Ho2Ti2O7. For the sample close to the doping level x=0.4, a giant enhancement of polarization P up t o 660muC/m2 from 0.54muC/m2 at x=0 is obtained, accompanied with an increment of ferroelectric transition point Tc up to ~140K from ~60K. A magnetic anomaly at T~140K together with the polarization response to magnetic field, is identified, implying the multiferroic effect in Ho2-xCrxTi2O7.
Using an elastic neutron scattering technique under a pulsed magnetic field up to 30 T, we determined the magnetic structure in the half-magnetization plateau phase in the spinel CdCr$_2$O$_4$. The magnetic structure has a cubic $P4_3$32 symmetry, wh ich is the same as that observed in HgCr$_2$O$_4$. This suggests that there is a universal field induced spin-lattice coupling mechanism at work in the Cr-based spinels.
228 - Pallab Bag , P. R. Baral , 2018
We report the structural, static, and dynamic properties of Cr$_{0.5}$Fe$_{0.5}$Ga by means of powder x-ray diffraction, magnetization, heat capacity, magnetic relaxation, and magnetic memory effect measurements. DC magnetization and AC susceptibilit y studies reveal a spin-glass transition at around $T_{rm f} simeq 22$~K. An intermediate value of the relative shift in freezing temperature $delta T_{rm f} simeq 0.017$, obtained from the AC susceptibility data reflects the formation of cluster spin-glass states. The frequency dependence of $T_{rm f}$ is also analyzed within the framework of dynamic scaling laws. The analysis using power law yields a time constant for a single spin flip $tau* simeq 1.1times10^{-10}$~s and critical exponent $z u^{prime}=4.2pm0.2$. On the other hand, the Vogel-Fulcher (VF) law yields the time constant for a single spin flip $tau_0 simeq 6.6times10^{-9}$~s, VF temperature $T_{rm 0}=21.1pm0.1$~K, and an activation energy $E_{rm a}/k_{rm B} simeq 16$~K. The value of $tau*$ and $tau_0$ along with a non-zero value of $T_{rm 0}$ provide further evidence for the cluster spin-glass behaviour. The magnetic field dependent $T_{rm f}$ follows the de Almeida-Thouless line with a non-mean-field type instability, reflecting either a different universality class or strong anisotropy in the spin system. A detailed non-equilibrium dynamics study via relaxation and memory effect experiments demonstrates striking memory effects. All the above observations render a cluster spin-glass behaviour which is triggered by magnetic frustration due to competing antiferromagnetic and ferromagnetic interactions and magnetic site disorder. Moreover, the asymmetric response of magnetic relaxation with respect to the change in temperature, below $T_{rm f}$ can be explained by the hierarchical model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا