ﻻ يوجد ملخص باللغة العربية
We explore the nature of carbon-rich ([C/Fe]_{1D,LTE} > +0.7), metal-poor ([Fe/H_{1D,LTE}] < -2.0) stars in the light of post 1D,LTE literature analyses, which provide 3D-1D and NLTE-LTE corrections for iron, and 3D-1D corrections for carbon (from the CH G-band, the only indicator at lowest [Fe/H]). High-excitation C~I lines are used to constrain 3D,NLTE corrections of G-band analyses. Corrections to the 1D,LTE compilations of Yoon et al. and Yong et al. yield 3D,LTE and 3D,NLTE Fe and C abundances. The number of CEMP-no stars in the Yoon et al. compilation (plus eight others) decreases from 130 (1D,LTE) to 68 (3D,LTE) and 35 (3D,NLTE). For stars with -4.5 < [Fe/H] < -3.0 in the compilation of Yong et al., the corresponding CEMP-no fractions change from 0.30 to 0.15 and 0.12, respectively. We present a toy model of the coalescence of pre-stellar clouds of the two populations that followed chemical enrichment by the first zero-heavy-element stars: the C-rich, hyper-metal-poor and the C-normal, very-metal-poor populations. The model provides a reasonable first-order explanation of the distribution of the 1D,LTE abundances of CEMP-no stars in the A(C) and [C/Fe] vs. [Fe/H] planes, in the range -4.0 < [Fe/H] < -2.0. The Yoon et al. CEMP Group I contains a subset of 19 CEMP-no stars (14% of the group), 4/9 of which are binary, and which have large [Sr/Ba]_{1D,LTE} values. The data support the conjectures of Hansen et al. (2016b, 2019) and Arentsen et al. (2018) that these stars may have experienced enrichment from AGB stars and/or spinstars.
Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to pre
We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contai
The chemical abundances of a galaxys metal-poor stellar population can be used to investigate the earliest stages of its formation and chemical evolution. The Magellanic Clouds are the most massive of the Milky Ways satellite galaxies and are thought
We examine the spatial distribution of the oldest and most metal poor stellar populations of Milky Way-sized galaxies using the APOSTLE cosmological hydrodynamical simulations of the Local Group. In agreement with earlier work, we find strong radial
The paper presents new results of the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68 with record-low-metallicity regions (12+log(O/H) ~7.14) of the current star formation (SF). They include: a) a new spectrum and photometry with the 6-m