ترغب بنشر مسار تعليمي؟ اضغط هنا

Circinus Galaxy Revisted with 10 Years of Fermi-LAT Data

308   0   0.0 ( 0 )
 نشر من قبل Xiao-Lei Guo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circinus galaxy is a nearby composite starburst/AGN system. In this work we re-analyze the GeV emission from Circinus with 10 years of {it Fermi}-LAT Pass 8 data. In the energy range of 1-500 GeV, the spectrum can be well fitted by a power-law model with a photon index of $Gamma$ = $2.20pm0.14$, and its photon flux is $(5.90pm1.04) times 10^{-10}$ photons cm$^{-2}$ s$^{-1}$. Our 0.1-500 GeV flux is several times lower than that reported in the previous literature, which is roughly in compliance with the empirical relation for star-forming and local group galaxies and might be reproduced by the interaction between cosmic rays and the interstellar medium. The ratio between the $gamma$-ray luminosity and the total infrared luminosity is near the proton calorimetric limit, indicating that Circinus may be a proton calorimeter. However, marginal evidence for variability of the $gamma$-ray emission is found in the timing analysis, which may indicate the activity of AGN jet. More {it Fermi}-LAT data and future observation of CTA are required to fully reveal the origin of its $gamma$-ray emission.

قيم البحث

اقرأ أيضاً

In 2018, the Fermi mission celebrated its first decade of operation. In this time, the Large Area Telescope (LAT) has been very successful in detecting the high-energy emission (>100 MeV) from Gamma-Ray Bursts (GRBs). The analysis of particularly rem arkable events - such as GRB 080916C, GRB 090510 and GRB 130427A - has been presented in dedicated publications. Here we present the results of a new systematic search for high-energy emission from the full sample of GRBs detected in 10 years by the Fermi Gamma-Ray Burst Monitor, as well as Swift, AGILE, Integral and IPN bursts, featuring a detection efficiency more than 50% better than previous works, and returning 186 detections during 10 years of LAT observations. This milestone marks a vast improvement from the 35 events contained in the first LAT GRB catalog (covering the first 3 years of Fermi operations). We assess the characteristics of the GRB population at high energy with unprecedented sensitivity, covering aspects such as temporal properties, energetics and spectral index of the high-energy emission. Finally, we show how the LAT observations can be used to inform theory, in particular the prospects for very high-energy emission.
We present the first Fermi Large Area Telescope (LAT) catalog of long-term $gamma$-ray transient sources (1FLT). This comprises sources that were detected on monthly time intervals during the first decade of Fermi-LAT operations. The monthly time sca le allows us to identify transient and variable sources that were not yet reported in other Fermi-LAT catalogs. The monthly datasets were analyzed using a wavelet-based source detection algorithm that provided the candidate new transient sources. The search was limited to the extragalactic regions of the sky to avoid the dominance of the Galactic diffuse emission at low Galactic latitudes. The transient candidates were then analyzed using the standard Fermi-LAT Maximum Likelihood analysis method. All sources detected with a statistical significance above 4$sigma$ in at least one monthly bin were listed in the final catalog. The 1FLT catalog contains 142 transient $gamma$-ray sources that are not included in the 4FGL-DR2 catalog. Many of these sources (102) have been confidently associated with Active Galactic Nuclei (AGN): 24 are associated with Flat Spectrum Radio Quasars; 1 with a BL Lac object; 70 with Blazars of Uncertain Type; 3 with Radio Galaxies; 1 with a Compact Steep Spectrum radio source; 1 with a Steep Spectrum Radio Quasar; 2 with AGN of other types. The remaining 40 sources have no candidate counterparts at other wavelengths. The median $gamma$-ray spectral index of the 1FLT-AGN sources is softer than that reported in the latest Fermi-LAT AGN general catalog. This result is consistent with the hypothesis that detection of the softest $gamma$-ray emitters is less efficient when the data are integrated over year-long intervals.
66 - Mattia Di Mauro 2021
The excess of $gamma$ rays in the data measured by Fermi-LAT from the Galactic center region is one of the most intriguing mysteries in Astroparticle Physics. This Galactic center excess (GCE), has been measured with respect to different interstellar emission models (IEMs), source catalogs, data selections and techniques. Although several proposed interpretations have appeared in the literature, there are not firm conclusions as to its origin. The main difficulty in solving this puzzle lies in modeling a region of such complexity and thus precisely measuring the characteristics of the GCE. In this paper, we use 11 years of Fermi-LAT data, state of the art IEMs, and the newest 4FGL source catalog to provide precise measurements of the energy spectrum, spatial morphology, position, and sphericity of the GCE. We find that the GCE has a spectrum which is peaked at a few GeV and is well fit with a log-parabola. The normalization of the spectrum changes by roughly $60%$ when using different IEMs, data selections and analysis techniques. The spatial distribution of the GCE is compatible with a dark matter (DM) template produced with a generalized NFW density profile with slope $gamma = 1.2-1.3$. No energy evolution is measured for the GCE morphology between $0.6-30$ GeV at a level larger than $10%$ of the $gamma$ average value, which is 1.25. The analysis of the GCE modeled with a DM template divided into quadrants shows that the spectrum and spatial morphology of the GCE is similar in different regions around the Galactic center. Finally, the GCE centroid is compatible with the Galactic center, with best-fit position between $l=[-0.3^{circ},0.0^{circ}],b=[-0.1^{circ},0.0^{circ}]$, and it is compatible with a spherical symmetric morphology. In particular, fitting the DM spatial profile with an ellipsoid gives a major-to-minor axis ratio between 0.8-1.2.
Sharp spectral structures in the $gamma$-ray band are an important dark matter (DM) signature. Previously, a tentative line feature at $sim 43~{rm GeV}$ is reported in 16 nearby galaxy clusters (GCls) with 7.1 years of Fermi-LAT data, whose TS value is $sim 16.7$. In this work, we search for line signals and box-shaped structures using the stacked data from those 16 GCls with 11.4-yr P8R3 data. There is still a hint at $sim {42~rm GeV}$, dominated by the radiation of Virgo and Ophiuchus clusters. Though the TS value was high up to 21.2 in October 2016, currently it has dropped to 13.1. Moreover, the TS value at $sim {42~rm GeV}$ decreases to 2.4 when the EDISP2 data are excluded from the analysis. Consequently, we do not find any statistically significant line-like signal and then set up the 95% confidence level upper limits on the thermally averaged cross section of DM annihilating into double photons. The same line search has been carried out for an alternative GCl sample from the Two Micron All-Sky Survey but no any evidence has been found. We also search for box-shaped features in those 16 baseline GCls. No signal is found as well and the corresponding upper limits on the annihilation cross section are given.
We present the systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first ten years of operation. This catalog contains two types of spectra; time-integrated spectral fits and spectral fits at the brightest time bin, from 2297 GRBs, resulting in a compendium of over 18000 spectra. The four different spectral models used for fitting the spectra were selected based on their empirical importance to the shape of many GRBs. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions both in the observer frame and in the GRB rest frame. 941 GRBs from the first four years have been re-fitted using the same methodology as that of the 1356 GRBs in years five through ten. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا