ﻻ يوجد ملخص باللغة العربية
Entanglement of quasiclassical (coherent) states of two harmonic oscillators leads to striking quantum effects and is useful for quantum technologies. These effects and applications are closely related to nonlocal correlations inherent in these states, manifested by the violation of Bell inequalities. With previous frameworks, this violation is limited by the size of the system, which does not approach the maximum even when the amount of entanglement approaches its maximum. Here we propose a new version of Bell correlation operators, with which a nearly maximal violation can be obtained as long as the associated entanglement approximates to the maximum. Consequently, the revealed nonlocality is significantly stronger than those with previous frameworks for a wide range of the system size. We present a new scheme for realizing the gate necessary for measurement of the nonlocal correlations. In addition to the use in test of quantum nonlocality, this gate is useful for quantum information processing with coherent states
We have applied an entanglement purification protocol to produce a single entangled pair of photons capable of violating a CHSH Bell inequality from two pairs that individually could not. The initial poorly-entangled photons were created by a control
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable
This work develops analytic methods to quantitatively demarcate quantum reality from its subset of classical phenomenon, as well as from the superset of general probabilistic theories. Regarding quantum nonlocality, we discuss how to determine the qu
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient
We study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum system. In the quantum system of $mathbb{C}^dotimesmathbb{C}^d$, where $d$ is odd, Zhang emph{et al} have constructed $d^2$ or