ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Test the Two-Families Scenario

144   0   0.0 ( 0 )
 نشر من قبل Prasanta Char
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We shortly summarize the two-families scenario in which both hadronic stars and strange quark stars can exist and we describe the main predictions one can obtain from it. We then concentrate on the observables that most likely will be measured in the near future, i.e. masses, radii, tidal deformabilities and moments of inertia and we present a list of objects that are candidate strange quark stars in this scheme. We show that the estimates of the radii derived up to now from observations are all compatible with the two-families scenario and in particular all the objects having large radii can easily be interpreted as strange quark stars.

قيم البحث

اقرأ أيضاً

We analyse the phenomenological implications of the two-families scenario on the merger of compact stars. That scenario is based on the coexistence of both hadronic stars and strange quark stars. After discussing the classification of the possible me rgers, we turn to detailed numerical simulations of the merger of two hadronic stars, i.e., first family stars in which delta resonances and hyperons are present, and we show results for the threshold mass of such binaries, for the mass dynamically ejected and the mass of the disk surrounding the post-merger object. We compare these results with those obtained within the one-family scenario and we conclude that relevant signatures of the two-families scenario can be suggested, in particular: the possibility of a rapid collapse to a black hole for masses even smaller than the ones associated to GW170817; during the first milliseconds, oscillations of the postmerger remnant at frequencies higher than the ones obtained in the one-family scenario; a large value of the mass dynamically ejected and a small mass of the disk, for binaries of low total mass. Finally, based on a population synthesis analysis, we present estimates of the number of mergers for: two hadronic stars; hadronic star - strange quark star; two strange quark stars. We show that for unequal mass systems and intermediate values of the total mass, the merger of a hadronic star and a strange quark star is very likely (GW170817 has a possible interpretation into this category of mergers). On the other hand, mergers of two strange quark stars are strongly suppressed.
A kilonova signal is generally expected after a Black Hole - Neutron Star merger. The strength of the signal is related to the equation of state of neutron star matter and it increases with the stiffness of the latter. The recent results obtained by NICER suggest a rather stiff equation of state and the expected kilonova signal is therefore strong, at least if the mass of the Black Hole does not exceed $sim 10 M_odot$. We compare the predictions obtained by considering equations of state of neutron star matter satisfying the most recent observations and assuming that only one family of compact stars exists with the results predicted in the two-families scenario. In the latter a soft hadronic equation of state produces very compact stellar objects while a rather stiff quark matter equation of state produces massive strange quark stars, satisfying NICER results. The expected kilonova signal in the two-families scenario is very weak: the Strange Quark Star - Black Hole merger does not produce a kilonova signal because, according to simulations, the amount of mass ejected is negligible and the Hadronic Star - Black Hole merger produces a much weaker signal than in the one-family scenario because the hadronic equation of state is very soft. This prediction will be easily tested with the new generation of detectors.
It is usually thought that a single equation of state (EoS) model correctly represents cores of all compact stars. Here we emphasize that two families of compact stars, viz., neutron stars and strange stars, can coexist in nature, and that neutron st ars can get converted to strange stars through the nucleation process of quark matter in the stellar center. From our fully general relativistic numerical computations of the structures of fast-spinning compact stars, known as millisecond pulsars, we find that such a stellar conversion causes a simultaneous spin-up and decrease in gravitational mass of these stars. This is a new type of millisecond pulsar evolution through a new mechanism, which gives rise to relatively lower mass compact stars with higher spin rates. This could have implication for the observed mass and spin distributions of millisecond pulsars. Such a stellar conversion can also rescue some massive, spin-supported millisecond pulsars from collapsing into black holes. Besides, we extend the concept of critical mass $M_{rm cr}$ for the neutron star sequence (Berezhiani et al. 2003; Bombaci et al. 2004) to the case of fast-spinning neutron stars, and point out that neutron star EoS models cannot be ruled out by the stellar mass measurement alone. Finally, we emphasize the additional complexity for constraining EoS models, for example, by stellar radius measurements using X-ray observations, if two families of compact stars coexist.
It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear - type Ia - supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption of a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at $sim 10$ MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of $sim 10$ kpc. At 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernova (SN Ia) remains elusive. Th e leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal. In this paper we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN~Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube would see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE would see a events if the supernova were closer than ${sim}0.3$ kpc. The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2$sigma$ if the distance to the supernova is less than $2.3;{rm kpc}$ for a normal mass ordering and $3.6;{rm kpc}$ for an inverted ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا