ﻻ يوجد ملخص باللغة العربية
It is necessary to make assumptions in order to derive models to be used for cosmological predictions and comparison with observational data. In particular, in standard cosmology the spatial curvature is assumed to be constant and zero (or at least very small). But there is, as yet, no fully independent constraint with an appropriate accuracy that gaurentees a value for the magnitude of the effective normalized spatial curvature $Omega_{k}$ of less than approximately $0.01$. Moreover, a small non-zero measurement of $Omega_{k}$ at such a level perhaps indicates that the assumptions in the standard model are not satisfied. It has also been increasingly emphasised that spatial curvature is, in general, evolving in relativistic cosmological models. We review the current situation, and conclude that the possibility of such a non-zero value of $Omega_k$ should be taken seriously.
We investigated the cosmology in a higher-curvature gravity where the dimensionality of spacetime gives rise to only quantitative difference, contrary to Einstein gravity. We found exponential type solutions for flat isotropic and homogeneous vacuum
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical
The universal character of the gravitational interaction provided by the equivalence principle motivates a geometrical description of gravity. The standard formulation of General Relativity `a la Einstein attributes gravity to the spacetime curvature
An old question surrounding bouncing models concerns their stability under vector perturbations. Considering perfect fluids or scalar fields, vector perturbations evolve kinematically as $a^{-2}$, where $a$ is the scale factor. Consequently, a defini
Applying the seminal work of Bose in 1924 on what was later known as Bose-Einstein statistics, Einstein predicted in 1925 that at sufficiently low temperatures, a macroscopic fraction of constituents of a gas of bosons will drop down to the lowest av