ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field line twisting by photospheric vortices: energy storage and release

110   0   0.0 ( 0 )
 نشر من قبل Franco Rappazzo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamics of a closed corona cartesian reduced magnetohydrodynamic (MHD) model where photospheric vortices twist the coronal magnetic field lines. We consider two corotating or counter-rotating vortices localized at the center of the photospheric plate, and additionally more corotating vortices that fill the plate entirely. Our investigation is specifically devoted to study the fully nonlinear stage, after the linear stage during which the vortices create laminar and smoothly twisting flux tubes. Our main goal is to understand the dynamics of photospheric vortices twisting the field lines of a coronal magnetic field permeated by finite amplitude broadband fluctuations. We find that depending on the arrangement and handedness of the photospheric vortices an inverse cascade storing a significant amount of magnetic energy may occur or not. In the first case a reservoir of magnetic energy available to large events such as destabilization of a pre-CME configuration develops, while in the second case the outcome is a turbulent heated corona. Although our geometry is simplified our simulations are shown to have relevant implications for coronal dynamics and CME initiation.



قيم البحث

اقرأ أيضاً

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magn etohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. But previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless field lines get twisted, but in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and CMEs initiation is discussed.
A recent study using {it Hinode} (SOT/FG) data of a sunspot revealed some unusually large penumbral jets that often repeatedly occurred at the same locations in the penumbra, namely at the tail of a penumbral filament or where the tails of multiple p enumbral filaments converged. These locations had obvious photospheric mixed-polarity magnetic flux in NaI 5896 Stokes-V images obtained with SOT/FG. Several other recent investigations have found that extreme ultraviolet (EUV)/X-ray coronal jets in quiet Sun regions (QRs), coronal holes (CHs) and near active regions (ARs) have obvious mixed-polarity fluxes at their base, and that magnetic flux cancellation prepares and triggers a minifilament flux-rope eruption that drives the jet. Typical QR, CH, and AR coronal jets are up to a hundred times bigger than large penumbral jets, and in EUV/X-ray images show clear twisting motion in their spires. Here, using IRIS MgII k 2796 AA SJ images and spectra in the penumbrae of two sunspots we characterize large penumbral jets. We find redshift and blueshift next to each other across several large penumbral jets, and interpret these as untwisting of the magnetic field in the jet spire. Using Hinode/SOT (FG and SP) data, we also find mixed-polarity magnetic flux at the base of these jets. Because large penumbral jets have mixed-polarity field at their base and have twisting motion in their spires, they might be driven the same way as QR, CH and AR coronal jets.
We study flare processes in the solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and manife stations of the flare energy release in the photosphere and chromosphere using high-resolution optical observations and magnetic field measurements. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolations for reconstruction of the magnetic topology and electric currents. The NLFFF modelling reveals interaction of two magnetic flux ropes with oppositely directed magnetic field in the PIL. These flux ropes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from NST. In the vicinity of PIL, the NST H alpha observations reveal formation of a thin three-ribbon structure corresponding to a small-scale photospheric magnetic arcade. The observational results evidence in favor of location of the primary energy release site in the chromospheric plasma with strong electric currents concentrated near the polarity inversion line. In this case, magnetic reconnection is triggered by the interacting magnetic flux ropes forming a current sheet elongated along the PIL.
This work is a continuation of Paper I [Sharykin et al., 2018] devoted to analysis of nonthermal electron dynamics and plasma heating in the confined M1.2 class solar flare SOL2015-03-15T22:43 revealing energy release in the highly sheared interactin g magnetic loops in the low corona, above the polarity inversion line (PIL). The scope of the present work is to make the first extensive quantitative analysis of the photospheric magnetic field and photospheric vertical electric current (PVEC) dynamics in the confined flare region near the PIL using new vector magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with high temporal resolution of 135 s. Data analysis revealed sharp changes of the magnetic structure and PVEC associated with the flare onset near the PIL. It was found that the strongest plasma heating and electron acceleration were associated with the largest increase of the magnetic reconnection rate, total PVEC and effective PVEC density in the flare ribbons. Observations and non-linear force-free field (NLFFF) extrapolations showed that the magnetic field structure around the PIL is consistent with the tether-cutting magnetic reconnection (TCMR) geometry. We gave qualitative interpretation of the observed dynamics of the flare ribbons, magnetic field and PVEC, and electron acceleration, within the TCMR scenario.
In this paper we seek to understand the timescale on which the photospheric motions on the Sun braid coronal magnetic field lines. This is a crucial ingredient for determining the viability of the braiding mechanism for explaining the high temperatur es observed in the corona. We study the topological complexity induced in the coronal magnetic field, primarily using plasma motions extracted from magneto-convection simulations. This topological complexity is quantified using the field line winding, finite time topological entropy and passive scalar mixing. With these measures we contrast mixing efficiencies of the magneto-convection simulation, a benchmark flow known as a ``blinking vortex, and finally photospheric flows inferred from sequences of observed magnetograms using local correlation tracking. While the highly resolved magneto-convection simulations induce a strong degree of field line winding and finite time topological entropy, the values obtained from the observations from the plage region are around an order of magnitude smaller. This behavior is carried over to the finite time topological entropy. Nevertheless, the results suggest that the photospheric motions induce complex tangling of the coronal field on a timescale of hours.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا