ترغب بنشر مسار تعليمي؟ اضغط هنا

Language-Conditioned Graph Networks for Relational Reasoning

123   0   0.0 ( 0 )
 نشر من قبل Ronghang Hu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving grounded language tasks often requires reasoning about relationships between objects in the context of a given task. For example, to answer the question What color is the mug on the plate? we must check the color of the specific mug that satisfies the on relationship with respect to the plate. Recent work has proposed various methods capable of complex relational reasoning. However, most of their power is in the inference structure, while the scene is represented with simple local appearance features. In this paper, we take an alternate approach and build contextualized representations for objects in a visual scene to support relational reasoning. We propose a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object, and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input. E.g., conditioning on the on relationship to the plate, the object mug gathers messages from the object plate to update its representation to mug on the plate, which can be easily consumed by a simple classifier for answer prediction. We experimentally show that our LCGN approach effectively supports relational reasoning and improves performance across several tasks and datasets. Our code is available at http://ronghanghu.com/lcgn.

قيم البحث

اقرأ أيضاً

Arbitrary shape text detection is a challenging task due to the high variety and complexity of scenes texts. In this paper, we propose a novel unified relational reasoning graph network for arbitrary shape text detection. In our method, an innovative local graph bridges a text proposal model via Convolutional Neural Network (CNN) and a deep relational reasoning network via Graph Convolutional Network (GCN), making our network end-to-end trainable. To be concrete, every text instance will be divided into a series of small rectangular components, and the geometry attributes (e.g., height, width, and orientation) of the small components will be estimated by our text proposal model. Given the geometry attributes, the local graph construction model can roughly establish linkages between different text components. For further reasoning and deducing the likelihood of linkages between the component and its neighbors, we adopt a graph-based network to perform deep relational reasoning on local graphs. Experiments on public available datasets demonstrate the state-of-the-art performance of our method.
Locating lesions is important in the computer-aided diagnosis of X-ray images. However, box-level annotation is time-consuming and laborious. How to locate lesions accurately with few, or even without careful annotations is an urgent problem. Althoug h several works have approached this problem with weakly-supervised methods, the performance needs to be improved. One obstacle is that general weakly-supervised methods have failed to consider the characteristics of X-ray images, such as the highly-structural attribute. We therefore propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection by imitating doctors training and decision-making process. CCG models the intra-image relationship between different anatomical areas by leveraging the structural information to simulate the doctors habit of observing different areas. Meanwhile, the relationship between any pair of images is modeled by a knowledge-reasoning module to simulate the doctors habit of comparing multiple images. We integrate intra-image and inter-image information into a unified end-to-end framework. Experimental results on the NIH Chest-14 database (112,120 frontal-view X-ray images with 14 diseases) demonstrate that the proposed method achieves state-of-the-art performance in weakly-supervised localization of lesions by absorbing professional knowledge in the medical field.
In this paper, we propose the Broadcasting Convolutional Network (BCN) that extracts key object features from the global field of an entire input image and recognizes their relationship with local features. BCN is a simple network module that collect s effective spatial features, embeds location information and broadcasts them to the entire feature maps. We further introduce the Multi-Relational Network (multiRN) that improves the existing Relation Network (RN) by utilizing the BCN module. In pixel-based relation reasoning problems, with the help of BCN, multiRN extends the concept of `pairwise relations in conventional RNs to `multiwise relations by relating each object with multiple objects at once. This yields in O(n) complexity for n objects, which is a vast computational gain from RNs that take O(n^2). Through experiments, multiRN has achieved a state-of-the-art performance on CLEVR dataset, which proves the usability of BCN on relation reasoning problems.
Inferring new facts from existing knowledge graphs (KG) with explainable reasoning processes is a significant problem and has received much attention recently. However, few studies have focused on relation types unseen in the original KG, given only one or a few instances for training. To bridge this gap, we propose CogKR for one-shot KG reasoning. The one-shot relational learning problem is tackled through two modules: the summary module summarizes the underlying relationship of the given instances, based on which the reasoning module infers the correct answers. Motivated by the dual process theory in cognitive science, in the reasoning module, a cognitive graph is built by iteratively coordinating retrieval (System 1, collecting relevant evidence intuitively) and reasoning (System 2, conducting relational reasoning over collected information). The structural information offered by the cognitive graph enables our model to aggregate pieces of evidence from multiple reasoning paths and explain the reasoning process graphically. Experiments show that CogKR substantially outperforms previous state-of-the-art models on one-shot KG reasoning benchmarks, with relative improvements of 24.3%-29.7% on MRR. The source code is available at https://github.com/THUDM/CogKR.
Video-and-Language Inference is a recently proposed task for joint video-and-language understanding. This new task requires a model to draw inference on whether a natural language statement entails or contradicts a given video clip. In this paper, we study how to address three critical challenges for this task: judging the global correctness of the statement involved multiple semantic meanings, joint reasoning over video and subtitles, and modeling long-range relationships and complex social interactions. First, we propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions. Specifically, it performs joint reasoning over video and subtitles in three hierarchies, where the graph structure is adaptively adjusted according to the semantic structures of the statement. Secondly, we introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies. The semantic coherence learning can further improve the alignment between vision and linguistics, and the coherence across a sequence of video segments. Experimental results show that our method significantly outperforms the baseline by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا