ﻻ يوجد ملخص باللغة العربية
We analyze the contributions of the one-pion-pole (OPP) exchange, caused by strong low-energy interactions, and the pseudoscalar interaction beyond the Standard Model (BSM) to the correlation coefficients of the neutron beta-decays for polarized neutrons, polarized electrons and unpolarized protons. The strength of contributions of pseudoscalar interactions is defined by the effective coupling constant C_ps = C^(OPP)_ps + C^(BSM)_ps. We show that the contribution of the OPP exchange is of order C^(OPP)_ps ~ - 10^(-5). The effective coupling constant C^(BSM)_ps of the pseudoscalar interaction BSM can be in principle complex. Using the results, obtained by Gonzalez-Alonso et al.( Prog. Part. Nucl. Phys. 104, 165 (2019)) we find that the values of the real and imaginary parts of the effective coupling constant C^(BSM)_ps are constrained by - 3.5x10^{-5} < ReC^(BSM)_ps < 0 and ImC^(BSM)_ps < - 2.3x10^(-5), respectively. The obtained results can be used as a theoretical background for experimental searches of contributions of interactions BSM in asymmetries of the neutron beta-decays with a polarized neutron, a polarized electron and an unpolarized proton at the level of accuracy of a few parts of $10^{-5}$ or even better (Abele, Hyperfine Interact.237, 155 (2016)).
As we have pointed out in (arXiv:1806.10107 [hep-ph]), the existence of neutron dark matter decay modes n -> chi + anything, where chi is a dark matter fermion, for the solution of the neutron lifetime problem changes priorities and demands to descri
We calculate the correlation coefficients of the electron-energy and electron-antineutrino angular distribution of the neutron beta decay with polarized electron and unpolarised neutron and proton. The calculation is carried out within the Standard M
We constrain the possibility of a new pseudoscalar coupling between the muon and proton using a recent measurement of the 2S hyperfine splitting in muonic hydrogen.
We present the first and complete dispersion relation analysis of the inner radiative corrections to the axial coupling constant $g_A$ in the neutron $beta$-decay. Using experimental inputs from the elastic form factors and the spin-dependent structu
We assess the ability of future neutron beta decay measurements of up to O(10^{-4}) precision to falsify the standard model, particularly the V-A law, and to identify the dynamics beyond it. To do this, we employ a maximum likelihood statistical fram