ﻻ يوجد ملخص باللغة العربية
We consider the Cauchy problem for plate equations with rotational inertia and frictional damping terms. We will derive asymptotic profiles of the solution in L^2-sense as time goes to infinity in the case when the initial data have high and low regularity, respectively. Especially, in the low regularity case of the initial data one encounters the regularity-loss structure of the solutions, and the analysis is more delicate. We employ the so-called Fourier splitting method combined with the explicit expression of the solutions (high frequency estimates) and the method due to Ikehata (low frequency estimates).
In this paper we obtain higher order asymptotic profilles of solutions to the Cauchy problem of the linear damped wave equation in $textbf{R}^n$ begin{equation*} u_{tt}-Delta u+u_t=0, qquad u(0,x)=u_0(x), quad u_t(0,x)=u_1(x), end{equation*} where $n
The aim of this article is to describe asymptotic profiles for the Kirchhoff equation, and to establish time decay properties and dispersive estimates for Kirchhoff equations. For this purpose, the method of asymptotic integration is developed for th
The large time behavior of zero mass solutions to the Cauchy problem for a convection-diffusion equation. We provide conditions on the size and shape of the initial datum such that the large time asymptotics of solutions is given either by the deriva
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
This paper is concerned with the nonlinear damped wave equation on a measure space with a self-adjoint operator, instead of the standard Laplace operator. Under a certain decay estimate on the corresponding heat semigroup, we establish the linear est