ﻻ يوجد ملخص باللغة العربية
Providing resilient network control is a critical concern for deploying Software-Defined Networking (SDN) into Wide-Area Networks (WANs). For performance reasons, a Software-Defined WAN is divided into multiple domains controlled by multiple controllers with a logically centralized view. Under controller failures, we need to remap the control of offline switches from failed controllers to other active controllers. Existing solutions could either overload active controllers to interrupt their normal operations or degrade network performance because of increasing the controller-switch communication overhead. In this paper, we propose RetroFlow to achieve low communication overhead without interrupting the normal processing of active controllers during controller failures. By intelligently configuring a set of selected offline switches working under the legacy routing mode, RetroFlow relieves the active controllers from controlling the selected offline switches while maintaining the flow programmability (e.g., the ability to change paths of flows) of SDN. RetroFlow also smartly transfers the control of offline switches with the SDN routing mode to active controllers to minimize the communication overhead from these offline switches to the active controllers. Simulation results show that compared with the baseline algorithm, RetroFlow can reduce the communication overhead up to 52.6% during a moderate controller failure by recovering 100% flows from offline switches and can reduce the communication overhead up to 61.2% during a serious controller failure by setting to recover 90% of flows from offline switches.
Software Defined Networking (SDN) promises greater flexibility for directing packet flows, and Network Function Virtualization promises to enable dynamic management of software-based network functions. However, the current divide between an intellige
Based on software-defined principles, we propose a holistic architecture for Cyberphysical Systems (CPS) and Internet of Things (IoT) applications, and highlight the merits pertaining to scalability, flexibility, robustness, interoperability, and cyb
To increase the scalability of Software Defined Networks (SDNs), flow aggregation schemes have been proposed to merge multiple mouse flows into an elephant aggregated flow for traffic engineering. In this paper, we first notice that the user bit-rate
Previous research on SDN traffic engineering mostly focuses on static traffic, whereas dynamic traffic, though more practical, has drawn much less attention. Especially, online SDN multicast that supports IETF dynamic group membership (i.e., any user
Recently, Internet service providers (ISPs) have gained increased flexibility in how they configure their in-ground optical fiber into an IP network. This greater control has been made possible by (i) the maturation of software defined networking (SD