ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological pumping of quantum correlations

123   0   0.0 ( 0 )
 نشر من قبل Victor Manuel Bastidas Valencia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological pumping and duality transformations are paradigmatic concepts in condensed matter and statistical mechanics. In this paper, we extend the concept of topological pumping of particles to topological pumping of quantum correlations. We propose a scheme to find pumping protocols for highly-correlated states by mapping them to uncorrelated ones. We show that one way to achieve this is to use dualities, because they are non-local transformations that preserve the topological properties of the system. By using them, we demonstrate that topological pumping of kinks and cluster-like excitations can be realized. We find that the entanglement of these highly-correlated excitations is strongly modified during the pumping process and the interactions enhance the robustness against disorder. Our work paves the way to explore topological pumping beyond the notion of particles and opens a new avenue to investigate the relation between correlations and topology.

قيم البحث

اقرأ أيضاً

The interplay of synchronization and topological band structures with symmetry protected midgap states under the influence of driving and dissipation is largely unexplored. Here we consider a trimer chain of electron shuttles, each consisting of a ha rmonic oscillator coupled to a quantum dot positioned between two electronic leads. Each shuttle is subject to thermal dissipation and undergoes a bifurcation towards self-oscillation with a stable limit cycle if driven by a bias voltage between the leads. By mechanically coupling the oscillators together, we observe synchronized motion at the ends of the chain, which can be explained using a linear stability analysis. Due to the inversion symmetry of the trimer chain, these synchronized states are topologically protected against local disorder. Furthermore, with current experimental feasibility, the synchronized motion can be observed by measuring the dot occupation of each shuttle. Our results open a new avenue to enhance the robustness of synchronized motion by exploiting topology.
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiaba tic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency omega. The solution allows following in a transparent way the evolution of pumped DC current from much smaller to much larger omega values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issu e by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter a nd compute analytically the full distribution of the work generated by the process. We consider linear and quadratic optomechanical coupling, where the cavity field is parametrically coupled to either the position or the square of the position of a mechanical oscillator, respectively. In the former case we find that the average work generated by the quench is zero, whilst the latter leads to a non-zero average value. Through fluctuations theorems we access the most relevant thermodynamical figures of merit, such as the free energy difference and the amount of irreversible work generated. We thus provide a full characterization of the out-of-equilibrium thermodynamics in the quantum regime for nonlinearly coupled bosonic modes. Our study is the first due step towards the construction and full quantum analysis of an optomechanical machine working fully out of equilibrium.
We demonstrate the effectiveness of quantum optimal control techniques in harnessing irreversibility generated by non-equilibrium processes, implemented in unitarily evolving quantum many-body systems. We address the dynamics of a finite-size quantum Ising model subjected to finite-time transformations, which unavoidably generate irreversibility. We show that work can be generated through such transformation by means of optimal controlled quenches, while quenching the degree of irreversibility to very low values, thus boosting the efficiency of the process and paving the way to a fully controllable non-equilibrium thermodynamics of quantum processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا