ﻻ يوجد ملخص باللغة العربية
Sensitive signal processing methods are needed to detect transiting planets from ground-based photometric surveys. Caceres et al. (2019) show that the AutoRegressive Planet Search (ARPS) method --- a combination of autoregressive integrated moving average (ARIMA) parametric modeling, a new Transit Comb Filter (TCF) periodogram, and machine learning classification --- is effective when applied to evenly spaced light curves from space-based missions. We investigate here whether ARIMA and TCF will be effective for ground-based survey light curves that are often sparsely sampled with high noise levels from atmospheric and instrumental conditions. The ARPS procedure is applied to selected light curves with strong planetary signals from the Kepler mission that have been altered to simulate the conditions of ground-based exoplanet surveys. Typical irregular cadence patterns are used from the HATSouth survey. We also evaluate recovery of known planets from HATSouth. Simulations test transit signal recovery as a function of cadence pattern and duration, stellar magnitude, planet orbital period and transit depth. Detection rates improve for shorter periods and deeper transits. The study predicts that the ARPS methodology will detect planets with $gtrsim 0.1$% transit depth and periods $lesssim 40$ days in HATSouth stars brighter than $sim$15 mag. ARPS methodology is therefore promising for planet discovery from ground-based exoplanet surveys with sufficiently dense cadence patterns.
The detection of periodic signals from transiting exoplanets is often impeded by extraneous aperiodic photometric variability, either intrinsic to the star or arising from the measurement process. Frequently, these variations are autocorrelated where
The 4-year light curves of 156,717 stars observed with NASAs Kepler mission are analyzed using the AutoRegressive Planet Search (ARPS) methodology described by Caceres et al. (2019). The three stages of processing are: maximum likelihood ARIMA modeli
Celestial objects exhibit a wide range of variability in brightness at different wavebands. Surprisingly, the most common methods for characterizing time series in statistics -- parametric autoregressive modeling -- is rarely used to interpret astron
As the NASA Transiting Exoplanet Survey Satellite (TESS) fulfills its primary mission it is executing an unprecedented all-sky survey with the potential to discover distant planets in our own solar system, as well as hundreds of Transneptunian Object
HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV da