ﻻ يوجد ملخص باللغة العربية
We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being perational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti)neutrinos travel, provide the ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through the Earth. Crucially, muon capture by Argon provides excellent charge-tagging, allowing to disentangle the neutrino and antineutrino signature. This is a critical extra benefit of having a Liquid Argon Time Projection Chamber as far detector, that could render a $4sigma$ extraction of the mass ordering after ten years of exposure.
We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standar
If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillati
We explore the capabilities of the upcoming Deep Underground Neutrino Experiment (DUNE) to measure $ u_tau$ charged-current interactions and the associated oscillation probability $P( u_mu to u_tau)$ at its far detector, concentrating on how such re
We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy
In this work we analyze quantum decoherence in neutrino oscillations considering the Open Quantum System framework and oscillations through matter for three neutrino families. Taking DUNE as a case study we performed sensitivity analyses for two neut