ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-fluid simulations of waves in the solar chromosphere I: numerical code verification

56   0   0.0 ( 0 )
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar chromosphere consists of a partially ionized plasma, which makes modeling the solar chromosphere a particularly challenging numerical task. Here we numerically model chromospheric waves using a two-fluid approach with a newly developed numerical code. The code solves two-fluid equations of conservation of mass, momentum and energy, together with the induction equation, for the case of the purely hydrogen plasma with collisional coupling between the charged and neutral fluid components. The implementation of a semi-implicit algorithm allows us to overcome the numerical stability constraints due to the stiff collisional terms. We test the code against analytical solutions of acoustic and Alfven wave propagation in uniform medium in several regimes of collisional coupling.The results of our simulations are consistent with the analytical estimates, and with other results described in the literature. In the limit of a large collisional frequency, the waves propagate with a common speed of a single fluid. In the other limit of a vanishingly small collisional frequency, the Alfven waves propagate with an Alfven speed of the charged fluid only, while the perturbation in neutral fluid is very small. The acoustic waves in these limits propagate with the sound speed corresponding to either the charges or the neutrals, while the perturbation in the other fluid component is very small. Otherwise, when the collision frequency is similar to the real part of the wave frequency, the interaction between charges and neutrals through momentum transfer collisions cause alterations of the waves frequencies and damping of the wave amplitudes.

قيم البحث

اقرأ أيضاً

We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D C artesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20-25 km s$^{-1}$. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3-4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
Waves and shocks traveling through the solar chromospheric plasma are influenced by its partial ionization and weak collisional coupling, and may become susceptible to multi-fluid effects, similar to interstellar shock waves. In this study, we consid er fast magneto-acoustic shock wave formation and propagation in a stratified medium, that is permeated by a horizontal magnetic field, with properties similar to that of the solar chromosphere. The evolution of plasma and neutrals is modeled using a two-fluid code that evolves a set of coupled equations for two separate fluids. We observed that waves in neutrals and plasma, initially coupled at the upper photosphere, become uncoupled at higher heights in the chromosphere. This decoupling can be a consequence of either the characteristic spatial scale at the shock front, that becomes similar to the collisional scale, or the change in the relation between the wave frequency, ion cyclotron frequency, and the collisional frequency with height. The decoupling height is a sensitive function of the wave frequency, wave amplitude, and the magnetic field strength. We observed that decoupling causes damping of waves and an increase in the background temperature due to the frictional heating. The comparison between analytical and numerical results allows us to separate the role of the nonlinear effects from the linear ones on the decoupling and damping of waves.
103 - C. Nutto , O. Steiner , M. Roth 2010
We present two-dimensional simulations of wave propagation in a realistic, non-stationary model of the solar atmosphere. This model shows a granular velocity field and magnetic flux concentrations in the intergranular lanes similar to observed veloci ty and magnetic structures on the Sun and takes radiative transfer into account. We present three cases of magneto-acoustic wave propagation through the model atmosphere, where we focus on the interaction of different magneto-acoustic wave at the layer of similar sound and Alfven speeds, which we call the equipartition layer. At this layer the acoustic and magnetic mode can exchange energy depending on the angle between the wave vector and the magnetic field vector. Our results show that above the equipartition layer and in all three cases the fast magnetic mode is refracted back into the solar atmosphere. Thus, the magnetic wave shows an evanescent behavior in the chromosphere. The acoustic mode, which travels along the magnetic field in the low plasma-$beta$ regime, can be a direct consequence of an acoustic source within or outside the low-$beta$ regime, or it can result from conversion of the magnetic mode, possibly from several such
We use 3D radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with initially weak mean magnetic fields. Th e results show that the vortex tubes penetrate into the chromosphere and substantially affect the structure and dynamics of the solar atmosphere. The vortex tubes are mostly concentrated in intergranular lanes and are characterized by strong (near sonic) downflows and swirling motions that capture and twist magnetic field lines, forming magnetic flux tubes that expand with height and which attain magnetic field strengths ranging from 200 G in the chromosphere to more than 1 kG in the photosphere. We investigate in detail the physical properties of these vortex tubes, including thermodynamic properties, flow dynamics, and kinetic and current helicities, and conclude that magnetized vortex tubes provide an important path for energy and momentum transfer from the convection zone into the chromosphere.
The suns chromosphere is a highly dynamic, partially-ionized region where spicules (hot jets of plasma) form. Here we present a two-fluid MHD model to study the chromosphere, which includes ion-neutral interaction and frictional heating. Our simulati on recovers a magnetic canopy shape that forms quickly, but is also quickly disrupted by the formation of a jet. Our simulation produces a shock self-consistently, where the jet is driven by the frictional heating, which is much greater than the ohmic heating. Thus, our simulation demonstrates that the jet could be driven purely by thermal effects due to ion-neutral collisions and not by magnetic reconnection. We plan to improve the model to include photo-chemical effects and radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا