ترغب بنشر مسار تعليمي؟ اضغط هنا

Penumbral micro-jets at high spatial and temporal resolution

124   0   0.0 ( 0 )
 نشر من قبل Luc Rouppe van der Voort
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sunspot observations in chromospheric spectral lines have revealed the existence of short-lived linear bright transients, commonly referred to as penumbral micro-jets (PMJs). Details on the origin and physical nature of PMJs are to large extend still unkown. We aim to characterize the dynamical nature of PMJs to provide guidance for future modelling efforts. We analyze high spatial (0.1 arcsec) and temporal resolution (1 s) Ca II H filtergram (0.1 nm bandwidth) observations of a sunspot obtained on two consecutive days with the Swedish 1-m Solar Telescope. We find that PMJs appear to be the rapid brightening of an already existing (faint) fibril. The rapid brightening is the fast increase (typically less than 10 s) in intensity over significant length (several 100s of km) of the existing fibril. For most PMJs, we cannot identify a clear root or source from where the brightening appears to originate. After the fast onset, about half of the PMJs have a top that is moving with an apparent velocity between 5 and 14 km/s, most of them upwards. For the other PMJs, there is no significant motion of the top. For about a third of the PMJs we observe a splitting into two parallel and co-evolving linear features during the later phases of the lifetime of the PMJ. We conclude that mass flows can play only limited role in the onset phase of PMJs and that it is more likely that we see the effect of a fast heating front.



قيم البحث

اقرأ أيضاً

We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details o f the many dynamic processes (e.g., evolving magnetic fields, accretion, convection, shocks, pulsations, winds, and jets) that affect stellar formation, structure, and evolution. These observations can only be provided by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m (a regime in which monolithic or segmented designs are not and will not be feasible) and since they require observations at wavelengths (UV) not accessible from the ground. Such observational capabilities would enable tremendous gains in our understanding of the individual stars and stellar systems that are the building blocks of our Universe and which serve as the hosts for life throughout the Cosmos.
Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observ ed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for these fields. However, the prediction that the majority of the weak, turbulent field resides in intergranular lanes also poses significant challenges to scattering polarization observations because high spatial resolution is usually difficult to attain. We aim to measure the difference in scattering polarization between granules and intergranules. We present the respective center-to-limb variations, which may serve as input for future models. We perform full Stokes filter polarimetry at different solar limb positions with the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents the first scattering polarization observations with sufficient spatial resolution to discern the granulation. Hinode-SOT offers unprecedented spatial resolution in combination with high polarimetric sensitivity. The CN band is known to have a significant scattering polarization signal, and is sensitive to the Hanle effect. We extend the instrumental polarization calibration routine to the observing wavelength, and correct for various systematic effects. The scattering polarization for granules (i.e., regions brighter than the median intensity of non-magnetic pixels) is significantly larger than for intergranules. We derive that the intergranules (i.e., the remaining non-magnetic pixels) exhibit (9.8 pm 3.0)% less scattering polarization for 0.2<u<0.3, although systematic effects cannot be completely excluded. These observations constrain MHD models in combination with (polarized) radiative transfer in terms of CN band line formation, radiation anisotropy, and magnetic fields.
154 - O. Chesneau , A. Kaufer , O. Stahl 2014
We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented ob servations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signal exhibit asymmetries that are interpreted as perturbations of the wind. A systematic visibility decrease is observed across the Bracket Gamma. During the 2006-2007 period the Bracket Gamma and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN, we infer a mass-loss rate change of about 20% between the two epochs. We further find time variations in the differential visibilities and phases. The 2006-2007 period is characterized by noticeable variations of the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much more quiet with virtually no detectable variations in the dispersed visibilities but a strong S-shape signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures.
By combining IFS with ExAO we are now able to resolve objects close to the diffraction-limit of large telescopes, exploring new science cases. We introduce an IFU designed to couple light with a minimal platescale from the SCExAO facility at NIR wave lengths to a SM spectrograph. The IFU has a 3D-printed MLA on top of a custom SM MCF, to optimize the coupling of light into the fiber cores. We demonstrate the potential of the instrument via initial results from the first on-sky runs at the 8.2 m Subaru Telescope with a spectrograph using off-the-shelf optics, allowing for rapid development with low cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا