ﻻ يوجد ملخص باللغة العربية
The large scale features of the solar wind are examined in order to predict small scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings, is that the kurtosis, of the small scale magnetic field increments, will increase with increasing Reynolds number. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Reynolds number decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance, is verified using a newly refined Voyager magnetic field dataset. We argue that these scalings continue to much smaller heliocentric distances approaching the Alfven critical region, motivating a prediction that the Parker Solar Probe spacecraft will observe increased magnetic field intermittency, stronger current sheets, and more localized dissipation, as its perihelion approaches the critical regions. Similar arguments should be applicable to turbulence in other expanding astrophysical plasmas.
Electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency are frequently observed in the solar wind, yet their generation mechanism is still an open question. Based on the Wind data during the years 2005$-$2015, this paper carries ou
Plasma kinetic waves and alpha-proton differential flow are two important subjects on the topic of evolution of the solar wind. Based on the Wind data during 2005-2015, this paper reports that the occurrence of electromagnetic cyclotron waves (ECWs)
Microinstabilities and waves excited at moderate-Mach-number perpendicular shocks in the near-Sun solar wind are investigated by full particle-in-cell (PIC) simulations. By analyzing the dispersion relation of fluctuating field components directly is
The scaling of the turbulent spectra provides a key measurement that allows to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in-situ da
Electron velocity distribution functions in the solar wind according to standard models consist of 4 components, of which 3 are symmetric - the core, the halo, and the superhalo, and one is magnetic field-aligned, beam-like population, referred to as