ترغب بنشر مسار تعليمي؟ اضغط هنا

Detector Technologies for CLIC

104   0   0.0 ( 0 )
 نشر من قبل Dominik Dannheim
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear electron-positron collider under development. It is foreseen to be built and operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. It offers a rich physics program including direct searches as well as the probing of new physics through a broad set of precision measurements of Standard Model processes, particularly in the Higgs-boson and top-quark sectors. The precision required for such measurements and the specific conditions imposed by the beam dimensions and time structure put strict requirements on the detector design and technology. This includes low-mass vertexing and tracking systems with small cells, highly granular imaging calorimeters, as well as a precise hit-time resolution and power-pulsed operation for all subsystems. A conceptual design for the CLIC detector system was published in 2012. Since then, ambitious R&D programmes for silicon vertex and tracking detectors, as well as for calorimeters have been pursued within the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector requirements with innovative technologies. This report introduces the experimental environment and detector requirements at CLIC and reviews the current status and future plans for detector technology R&D.

قيم البحث

اقرأ أيضاً

This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage i s optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.
Together with the recent CLIC detector model CLICdet a new software suite was introduced for the simulation and reconstruction of events in this detector. This note gives a brief introduction to CLICdet and describes the CLIC experimental conditions at 380 GeV and 3 TeV, including beam-induced backgrounds. The simulation and reconstruction tools are introduced, and the physics performance obtained is described in terms of single particles, particles in jets, jet energy resolution and flavour tagging. The performance of the very forward electromagnetic calorimeters is also discussed.
66 - Maxim Titov 2013
A centenary after the invention of the basic principle of gas amplification, gaseous detectors - are still the first choice whenever the large area coverage with low material budget is required. Advances in photo-lithography and micro-processing tech niques in the chip industry during the past two decades triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the-art of the MPGD technologies and summarizes recent activities for the next generation of colliders within the framework of the RD51 collaboration.
In order to achieve the challenging requirements on the CLIC vertex detector, a range of technology options have been considered in recent years. One prominent idea is the use of active sensors implemented in a commercial high-voltage CMOS process, c apacitively coupled to hybrid pixel readout chips. Recent results have shown the approach to be feasible, though more detailed studies of the performance of such devices, including simulation, are required. The CLICdp collaboration has developed a number of ASICs as part of its vertex detector R&D programme, and here we present results on the performance of a CCPDv3 active sensor glued to a CLICpix readout chip. Charge collection characteristics and tracking performance have been measured over the full expected angular range of incident particles using 120 GeV/c secondary hadron beams from the CERN SPS. Single hit efficiencies have been observed above 99% in the full range of track incidence angles, down to shallow angles. The single hit resolution has also been observed to be stable over this range, with a resolution around 6 $mu$m. The measured charge collection characterstics have been compared to simulations carried out using the Sentaurus TCAD finite-element simulation package combined with circuit simulations and parametrisations of the readout chip response. The simulations have also been successfully used to reproduce electric fields, depletion depths and the current-voltage characteristics of the device, and have been further used to make predictions about future device designs.
The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial $180$ nm HV-CMOS process and contains a matrix of $128times128$ square pixels with $25$ $mu$m pitch. First prototypes have been produced with a standard resistivity of $sim20$ $Omega$cm for the substrate and tested in standalone mode. The results show a rise time of $sim20$ ns, charge gain of $190$ mV/ke$^{-}$ and $sim40$ e$^{-}$ RMS noise for a power consumption of $4.8$ $mu$W/pixel. The main design aspects, as well as standalone measurement results, are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا