ترغب بنشر مسار تعليمي؟ اضغط هنا

Reachability analysis of linear hybrid systems via block decomposition

251   0   0.0 ( 0 )
 نشر من قبل Christian Schilling
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.

قيم البحث

اقرأ أيضاً

98 - Stefan Schupp 2017
In this paper we propose an improvement for flowpipe-construction-based reachability analysis techniques for hybrid systems. Such methods apply iterative successor computations to pave the reachable region of the state space by state sets in an over- approximative manner. As the computational costs steeply increase with the dimension, in this work we analyse the possibilities for improving scalability by dividing the search space in sub-spaces and execute reachability computations in the sub-spaces instead of the global space. We formalise such an algorithm and provide experimental evaluations to compare the efficiency as well as the precision of our sub-space search to the original search in the global space.
Frequency domain analysis of linear time-invariant (LTI) systems in feedback with static nonlinearities is a classical and fruitful topic of nonlinear systems theory. We generalize this approach beyond equilibrium stability analysis with the aim of c haracterizing feedback systems whose asymptotic behavior is low dimensional. We illustrate the theory with a generalization of the circle criterion for the analysis of multistable and oscillatory Lure feedback systems.
In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.
Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This pa per develops methods for estimating the reachable set and verifying safety properties of dynamical systems under control of neural network-based controllers that may be implemented in embedded software. The neural network controllers we consider are feedforward neural networks called multilayer perceptrons (MLP) with general activation functions. As such feedforward networks are memoryless, they may be abstractly represented as mathematical functions, and the reachability analysis of the network amounts to range (image) estimation of this function provided a set of inputs. By discretizing the input set of the MLP into a finite number of hyper-rectangular cells, our approach develops a linear programming (LP) based algorithm for over-approximating the output set of the MLP with its input set as a union of hyper-rectangular cells. Combining the over-approximation for the output set of an MLP based controller and reachable set computation routines for ordinary difference/differential equation (ODE) models, an algorithm is developed to estimate the reachable set of the closed-loop system. Finally, safety verification for neural network control systems can be performed by checking the existence of intersections between the estimated reachable set and unsafe regions. The approach is implemented in a computational software prototype and evaluated on numerical examples.
We study a constrained optimal control problem for an ensemble of control systems. Each sub-system (or plant) evolves on a matrix Lie group, and must satisfy given state and control action constraints pointwise in time. In addition, certain multiplex ing requirement is imposed: the controller must be shared between the plants in the sense that at any time instant the control signal may be sent to only one plant. We provide first-order necessary conditions for optimality in the form of suitable Pontryagin maximum principle in this problem. Detailed numerical experiments are presented for a system of two satellites performing energy optimal maneuvers under the preceding family of constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا