The present work deals with quantum cosmology for non-minimally coupled scalar field in the background of FLRW space--time model. The Wheeler-DeWitt equation is constructed and symmetry analysis is carried out. The Lie point symmetries are related to the conformal algebra of the minisuperspace while solution of the Wheeler-DeWitt equation is obtained using conserved currents of the Noether symmetries.
The paper deals with a non--minimally coupled scalar field in the background of homogeneous but anisotropic Kantowski--Sachs space--time model. The form of the coupling function of the scalar field with gravity and the potential function of the scala
r field are not assumed phenomenologically, rather they are evaluated by imposing Noether symmetry to the Lagrangian of the present physical system. The physical system gets considerable mathematical simplification by a suitable transformation of the augmented variables $(a, b, phi)rightarrow (u, v, w)$ and by the use of the conserved quantities due to the geometrical symmetry. Finally, cosmological solutions are evaluated and analyzed from the point of view of the present evolution of the Universe.
In this paper we discuss local averages of the energy density for the non-minimally coupled scalar quantum field, extending a previous investigation of the classical field. By an explicit example, we show that such averages are unbounded from below o
n the class of Hadamard states. This contrasts with the minimally coupled field, which obeys a state-independent lower bound known as a Quantum Energy Inequality (QEI). Nonetheless, we derive a generalised QEI for the non-minimally coupled scalar field, in which the lower bound is permitted to be state-dependent. This result applies to general globally hyperbolic curved spacetimes for coupling constants in the range $0<xileq 1/4$. We analyse the state-dependence of our QEI in four-dimensional Minkowski space and show that it is a nontrivial restriction on the averaged energy density in the sense that the lower bound is of lower order, in energetic terms, than the averaged energy density itself.
In this work we investigate the evolution of a Universe consisted of a scalar field, a dark matter field and non-interacting baryonic matter and radiation. The scalar field, which plays the role of dark energy, is non-minimally coupled to space-time
curvature, and drives the Universe to a present accelerated expansion. The non-relativistic dark matter field interacts directly with the dark energy and has a pressure which follows from a thermodynamic theory. We show that this model can reproduce the expected behavior of the density parameters, deceleration parameter and luminosity distance.
We show that the combined minimal and non minimal interaction with the gravitational field may produce the generation of a cosmological constant without self-interaction of the scalar field. In the same vein we analyze the existence of states of a sc
alar field that by a combined interaction of minimal and non minimal coupling with the gravitational field can exhibit an unexpected property, to wit, they are acted on by the gravitational field but do not generate gravitational field. In other words, states that seems to violate the action-reaction principle. We present explicit examples of this situation in the framework of a spatially isotropic and homogeneous universe.
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, t
his result allows us, in principle, to infer some of the dynamical properties of the cosmologies from the geometry of the associated augmented spaces.