ﻻ يوجد ملخص باللغة العربية
We show that strong electron-electron interactions in cavity-coupled quantum materials can enable collectively enhanced light-matter interactions with ultrastrong effective coupling strengths. As a paradigmatic example we consider a Fermi-Hubbard model coupled to a single-mode cavity and find that resonant electron-cavity interactions result in the formation of a quasi-continuum of polariton branches. The vacuum Rabi splitting of the two outermost branches is collectively enhanced and scales with $g_{text{eff}}proptosqrt{2L}$, where $L$ is the number of electronic sites, and the maximal achievable value for $g_{text{eff}}$ is determined by the volume of the unit cell of the crystal. We find that $g_{text{eff}}$ for existing quantum materials can by far exceed the width of the first excited Hubbard band. This effect can be experimentally observed via measurements of the optical conductivity and does not require ultra-strong coupling on the single-electron level. Quantum correlations in the electronic ground state as well as the microscopic nature of the light-matter interaction enhance the collective light-matter interaction compared to an ensemble of independent two-level atoms interacting with a cavity mode.
We show that the macroscopic magnetic and electronic properties of strongly correlated electron systems can be manipulated by coupling them to a cavity mode. As a paradigmatic example we consider the Fermi-Hubbard model and find that the electron-cav
The p-n junction has provided the basis for the semiconductor-device industry. Investigations of p-n junctions based on Mott insulators is still in its infancy. Layered Mott insulators, such as the cuprates or other transition metal-oxides, present a
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is u
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho