ترغب بنشر مسار تعليمي؟ اضغط هنا

DC Josephson effect in superconductor-quantum dot-superconductor junctions

99   0   0.0 ( 0 )
 نشر من قبل Abhiram Soori
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Abhiram Soori




اسأل ChatGPT حول البحث

A quantum dot weakly coupled to two normal metal leads exhibits resonant transmission when one of the dot energy levels lies within the applied bias window. But when the quantum dot is sidecoupled to the transport channel, transmission in the channel is suppressed when a dot energy lies in the bias window. A steady current can also be driven in a transport channel by connecting it to superconducting reservoirs and applying a Josephson phase difference instead of a voltage bias. An interesting question is to investigate the transport across quantum dot connected to two superconductors maintained at a superconducting phase difference. To incorporate the geometry where quantum dot is sidecoupled, we consider a quantum dot with two sites connected to the superconductors in two geometrical configurations: (A) the one where both the sites are in the transport channel and (B) the other where only one site is in the transport channel and the second site sidecoupled. We find that both the configurations show resonant transmission for Josephson current and give qualitatively same result when the onsite energies of the two sites in the dot are equal. The two configurations exhibit distinct Josephson current characteristics when the onsite energies of the two sites are equal in magnitude and opposite in sign. We understand the obtained results. The systems studied are within the reach of current experiments.



قيم البحث

اقرأ أيضاً

We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two conventional superconductors. Close to resonance, the particle-hole symmetric Andreev states that form in the junction are detached from the continuum a bove the superconducting gap in the leads, while a gap between them opens near the Fermi level. Under voltage bias, we formulate a stochastic model that accounts for non-adiabatic processes, which change the occupations of the Andreev states. This model allows calculating the current noise spectrum and determining the Fano factor. Analyzing the finite-frequency noise, we find that the model may exhibit either an integer or a fractional AC Josephson effect, depending on the bias voltage and the size of the gaps in the Andreev spectrum. Our results assess the limitations in using the fractional Josephson radiation as a probe of topology.
Topological superconductors supporting Majorana Fermions with non-abelian statistics are presently a subject of intense theoretical and experimental effort. It has been proposed that the observation of a half-frequency or a fractional Josephson effec t is a more reliable test for topological superconductivity than the search for end zero modes. Low-energy end modes can occur accidentally due to impurities. In fact, the fractional Josephson effect has been observed for the semiconductor nanowire system. Here we consider the ac Josephson effect in a conventional s-wave superconductor-normal metal-superconductor junction at a finite voltage. Using a Floquet-Keldysh treatment of the finite voltage junction, we show that the power dissipated from the junction, which measures the ac Josephson effect, can show a peak at half (or even incommensurate fractions) of the Josephson frequency. A similar conclusion is shown to hold for the Shapiro step measurement. The ac fractional Josephson peak can also be understood simply in terms of Landau-Zener processes associated with the Andreev bound state spectrum of the junction.
Time-reversal invariant topological superconductors are characterized by the presence of Majorana Kramers pairs localized at defects. One of the transport signatures of Majorana Kramers pairs is the quantized differential conductance of $4e^2/h$ when such a one-dimensional superconductor is coupled to a normal-metal lead. The resonant Andreev reflection, responsible for this phenomenon, can be understood as the boundary condition change for lead electrons at low energies. In this paper, we study the stability of the Andreev reflection fixed point with respect to electron-electron interactions in the Luttinger liquid. We first calculate the phase diagram for the Luttinger liquid-Majorana Kramers pair junction and show that its low-energy properties are determined by Andreev reflection scattering processes in the spin-triplet channel, i.e. the corresponding Andreev boundary conditions are similar to that in a spin-triplet superconductor - normal lead junction. We also study here a quantum dot coupled to a normal lead and a Majorana Kramers pair and investigate the effect of local repulsive interactions leading to an interplay between Kondo and Majorana correlations. Using a combination of renormalization group analysis and slave-boson mean-field theory, we show that the system flows to a new fixed point which is controlled by the Majorana interaction rather than the Kondo coupling. This Majorana fixed point is characterized by correlations between the localized spin and the fermion parity of each spin sector of the topological superconductor. We investigate the stability of the Majorana phase with respect to Gaussian fluctuations.
147 - G. Burnell 2001
Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and has a well-developed s-wave energy gap (∆), implying that electronic devices based on MgB2 could operate close to 30K. Although a number of groups have reported the formation of thin films by post-reaction of precursors, heterostructure growth is likely to require considerable technological development, making single-layer device structures of most immediate interest. MgB2 is unlike the cuprate superconductors in that grain boundaries do not form good Josephson junctions, and although a SQUID based on MgB2 nanobridges has been fabricated, the nanobridges themselves do not show junction-like properties. Here we report the successful creation of planar MgB2 junctions by localised ion damage in thin films. The critical current (IC) of these devices is strongly modulated by applied microwave radiation and magnetic field. The product of the critical current and normal state resistance (ICRN) is remarkably high, implying a potential for very high frequency applications.
We study theoretically the effects of interfacial Rashba and Dresselhaus spin-orbit coupling in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions---with allowing for tunneling barriers between the layers---by solving the Bogoljubo v-de Gennes equation for a realistic heterostructure and applying the Furusaki-Tsukada technique to calculate the electric current at a finite temperature. The presence of spin-orbit couplings leads to out- and in-plane magnetoanisotropies of the Josephson current, which are giant in comparison to current magnetoanisotropies in similar normal-state ferromagnet/normal metal (F/N) junctions. Especially huge anisotropies appear in the vicinity of $ 0 $-$ pi $ transitions, caused by the exchange-split bands in the ferromagnetic metal layer. We also show that the direction of the Josephson critical current can be controlled (inducing $ 0 $-$ pi $ transitions) by the strength of the spin-orbit coupling and, more crucial, by the orientation of the magnetization. Such a control can bring new functionalities into Josephson junction devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا