ﻻ يوجد ملخص باللغة العربية
While nowadays deep neural networks achieve impressive performances on semantic segmentation tasks, they are usually trained by optimizing pixel-wise losses such as cross-entropy. As a result, the predictions outputted by such networks usually struggle to accurately capture the object boundaries and exhibit holes inside the objects. In this paper, we propose a novel approach to improve the structure of the predicted segmentation masks. We introduce a novel semantic edge detection network, which allows to match the predicted and ground truth segmentation masks. This Semantic Edge-Aware strategy (SEMEDA) can be combined with any backbone deep network in an end-to-end training framework. Through thorough experimental validation on Pascal VOC 2012 and Cityscapes datasets, we show that the proposed SEMEDA approach enhances the structure of the predicted segmentation masks by enforcing sharp boundaries and avoiding discontinuities inside objects, improving the segmentation performance. In addition, our semantic edge-aware loss can be integrated into any popular segmentation network without requiring any additional annotation and with negligible computational load, as compared to standard pixel-wise cross-entropy loss.
Unsupervised domain adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain. Existing self-training based UDA approaches assign pseudo labels for target data and treat them as ground truth labels
This paper proposes a novel active boundary loss for semantic segmentation. It can progressively encourage the alignment between predicted boundaries and ground-truth boundaries during end-to-end training, which is not explicitly enforced in commonly
Few-shot semantic segmentation models aim to segment images after learning from only a few annotated examples. A key challenge for them is overfitting. Prior works usually limit the overall model capacity to alleviate overfitting, but the limited cap
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap
Compared with expensive pixel-wise annotations, image-level labels make it possible to learn semantic segmentation in a weakly-supervised manner. Within this pipeline, the class activation map (CAM) is obtained and further processed to serve as a pse