ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible broadband polarization converter based on metasurfaceat microwave band

136   0   0.0 ( 0 )
 نشر من قبل Xiangkun Kong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a flexible broadband linear polarization converter based on metasurface operating at microwave band. In order to achieve bandwidth extension property, long and short metallic arc wires, as well as the metallic disks placed over a ground plane, are combined into the polarizer, which can generate three neighboring resonances. Due to the combination of the first two resonances and optimized size and thickness of the unit cell, the polarization converter can have a weak incident angle dependence. Both simulated and measured results confirm that the average polarization conversion ratio is over 85% from 11.3 to 20.2 GHz within a broad incident angle from 0{deg} to 45{deg}. Moreover, the proposed polarization converter based on flexible substrates can be applied for conformal design. The simulation and experiment results demonstrate that our designed polarizer still keeps high polarization conversion efficiency even when it adheres on convex cylindrical surfaces. The periodic metallic structure of the designed polarizer has great potential application values in the microwave, terahertz and optic regimes.



قيم البحث

اقرأ أيضاً

In this paper, a broadband tunable polarization converter based on graphene metasurfaces is proposed. This polarization converter works in the terahertz (THz) frequency region, using the advantage of graphene characteristics to have a tunable frequen cy response. The designed graphene-shaped periodic structure on top of the substrate is utilized to convert the incident wave polarization to the desired target in a flexible operational band in the THz frequencies. The polarization conversion ratio is more than 0.85 in a wide range of frequencies in the THz band from 4.86 to 8.42 THz (the fractional bandwidth is 54%). The proposed polarization converter is insensitive to the angle of the incident wave up to 40{deg}. Using graphene provides a tunable frequency response without changing the geometry of the designed structure.
In this paper, we combine the design of band-pass frequency selective surfaces (FSSs) with polarization converters to realize a broadband frequency-selective polarization converter (FSPC) with lowbackward scattering, which consists of the top polariz ation conversion layer backed by a multi-layer bandpass FSS. It is numerically demonstrated that the 1 dB transmission window can be obtained from 8.5 GHz to 11 GHz with a 25.6% fractional bandwidth (FBW), and the bandwidth of reflection below -10 dB is up to 92% from 5.6 GHz to 15.13 GHz. Moreover, the proposed device can achieve two polarization conversion bands (5.66-6.9 GHz and 12.8-15.2GHz) with the polarization conversion ratio over 90%. Besides, by arranging the proposed structure in a checkerboard-like distribution, the backward scattering energy can be reduced in a wide frequency band ranging from 4 to 16 GHz. Both simulation and experimental results are in good agreements, which demonstrates our design strategy. Compared with the conventional polarization conversion designs, the proposed design presents an extra frequency-selective performance and hence can be applied to various practical situations, for instance, working as radomes to transmit the in-band signals with high-efficiency while keeping low-backward scattering for the out-of-band waves.
77 - Shubo Wang , Bo Hou , 2018
We propose to use logarithmic spiral resonators for efficient absorption of microwaves. By combining their scale invariant geometries and Fabry-Perot-type resonances stemming from the fundamental TM mode, we realize a microwave metasurface with broad band absorption performance. The metasurface comprises logarithmic spiral resonators backed with a metallic surface and it can absorb >95% of incident microwave energy within the frequency range of 6 GHz - 37 GHz. We discuss the physics underlying the broadband absorption and the crucial role of vortex energy flow. The study opens a new direction of electromagnetic wave absorption by employing the scale invariance of Maxwell equations.
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode co ntains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.
Energy squeezing attracts many attentions for its potential applications in electromagnetic (EM) energy harvesting and optical communication. However, due to the Fabry-Perot resonance, only the EM waves with discrete frequencies can be squeezed and, as far as we know, in the previous energy-squeezing devices, stringent requirements of the materials or the geometrical shape are needed. We note that the structures filled with epsilon-near-zero (ENZ) mediums as reported in some works can squeeze and tunnel EM waves at frequencies (e.g. plasma frequency). However, the group velocity is usually near zero which means few EM information travel through the structures. In this paper, low-loss energy squeezing and tunneling (EST) based on unidirectional modes were demonstrated in YIG-based one-way waveguides at microwave frequencies. According to our theoretical analysis and the simulations using finite element method, broadband EST was achieved and the EM EST was observed even for extremely bended structures. Besides, similar EM EST was achieved in a realistic three-dimensional remanence-based one-way waveguide as well. The unidirectional modes-based EST paving the way to ultra-subwavelength EM focusing, enhanced nonlinear optics, and designing numerous functional devices in integrated optical circuits such as phase modulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا