ترغب بنشر مسار تعليمي؟ اضغط هنا

On Mirror Maps for Manifolds of Exceptional Holonomy

89   0   0.0 ( 0 )
 نشر من قبل Andreas P. Braun
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study mirror symmetry of type II strings on manifolds with the exceptional holonomy groups $G_2$ and Spin(7). Our central result is a construction of mirrors of Spin(7) manifolds realized as generalized connected sums. In parallel to twisted connected sum $G_2$ manifolds, mirrors of such Spin(7) manifolds can be found by applying mirror symmetry to the pair of non-compact manifolds they are glued from. To provide non-trivial checks for such geometric mirror constructions, we give a CFT analysis of mirror maps for Joyce orbifolds in several new instances for both the Spin(7) and the $G_2$ case. For all of these models we find possible assignments of discrete torsion phases, work out the action of mirror symmetry, and confirm the consistency with the geometrical construction. A novel feature appearing in the examples we analyse is the possibility of frozen singularities.



قيم البحث

اقرأ أيضاً

106 - Alan L. Carey , 2002
This paper shows how to construct anomaly free world sheet actions in string theory with $D$-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to $D$-branes and connecti ons on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.
147 - Andrew Clarke 2013
We give a construction of $G_2$ and $Spin(7)$ instantons on exceptional holonomy manifolds constructed by Bryant and Salamon, by using an ansatz of spherical symmetry coming from the manifolds being the total spaces of rank-4 vector bundles. In the $ G_2$ case, we show that, in the asymptotically conical model, the connections are asymptotic to Hermitian Yang-Mills connections on the nearly Kahler $S^3times S^3$.
M-theory compactified on $G_2$-holonomy manifolds results in 4d $mathcal{N}=1$ supersymmetric gauge theories coupled to gravity. In this paper we focus on the gauge sector of such compactifications by studying the Higgs bundle obtained from a partial ly twisted 7d super Yang-Mills theory on a supersymmetric three-cycle $M_3$. We derive the BPS equations and find the massless spectrum for both abelian and non-abelian gauge groups in 4d. The mathematical tool that allows us to determine the spectrum is Morse theory, and more generally Morse-Bott theory. The latter generalization allows us to make contact with twisted connected sum (TCS) $G_2$-manifolds, which form the largest class of examples of compact $G_2$-manifolds. M-theory on TCS $G_2$-manifolds is known to result in a non-chiral 4d spectrum. We determine the Higgs bundle for this class of $G_2$-manifolds and provide a prescription for how to engineer singular transitions to models that have chiral matter in 4d.
111 - Alessio Savini 2019
Let $text{G}(n)$ be equal either to $text{PO}(n,1),text{PU}(n,1)$ or $text{PSp}(n,1)$ and let $Gamma leq text{G}(n)$ be a uniform lattice. Denote by $mathbb{H}^n_K$ the hyperbolic space associated to $text{G}(n)$, where $K$ is a division algebra over the reals of dimension $d=dim_{mathbb{R}} K$. Assume $d(n-1) geq 2$. In this paper we generalize natural maps to measurable cocycles. Given a standard Borel probability $Gamma$-space $(X,mu_X)$, we assume that a measurable cocycle $sigma:Gamma times X rightarrow text{G}(m)$ admits an essentially unique boundary map $phi:partial_infty mathbb{H}^n_K times X rightarrow partial_infty mathbb{H}^m_K$ whose slices $phi_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are atomless for almost every $x in X$. Then, there exists a $sigma$-equivariant measurable map $F: mathbb{H}^n_K times X rightarrow mathbb{H}^m_K$ whose slices $F_x:mathbb{H}^n_K rightarrow mathbb{H}^m_K$ are differentiable for almost every $x in X$ and such that $text{Jac}_a F_x leq 1$ for every $a in mathbb{H}^n_K$ and almost every $x in X$. The previous properties allow us to define the natural volume $text{NV}(sigma)$ of the cocycle $sigma$. This number satisfies the inequality $text{NV}(sigma) leq text{Vol}(Gamma backslash mathbb{H}^n_K)$. Additionally, the equality holds if and only if $sigma$ is cohomologous to the cocycle induced by the standard lattice embedding $i:Gamma rightarrow text{G}(n) leq text{G}(m)$, modulo possibly a compact subgroup of $text{G}(m)$ when $m>n$. Given a continuous map $f:M rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) x U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا