ﻻ يوجد ملخص باللغة العربية
Fuzzing is a promising technique for detecting security vulnerabilities. Newly developed fuzzers are typically evaluated in terms of the number of bugs found on vulnerable programs/binaries. However,existing corpora usually do not capture the features that prevent fuzzers from finding bugs, leading to ambiguous conclusions on the pros and cons of the fuzzers evaluated. A typical example is that Driller detects more bugs than AFL, but its evaluation cannot establish if the advancement of Driller stems from the concolic execution or not, since, for example, its ability in resolving a dataset`s magic values is unclear. In this paper, we propose to address the above problem by generating corpora based on search-hampering features. As a proof-of-concept, we have designed FEData, a prototype corpus that currently focuses on four search-hampering features to generate vulnerable programs for fuzz testing. Unlike existing corpora that can only answer how, FEData can also further answer why by exposing (or understanding) the reasons for the identified weaknesses in a fuzzer. The why information serves as the key to the improvement of fuzzers.
Ethereum Virtual Machine (EVM) is the run-time environment for smart contracts and its vulnerabilities may lead to serious problems to the Ethereum ecology. With lots of techniques being developed for the validation of smart contracts, the security p
In the field of mutation analysis, mutation is the systematic generation of mutated programs (i.e., mutants) from an original program. The concept of mutation has been widely applied to various testing problems, including test set selection, fault lo
Recently, there has been a significant growth of interest in applying software engineering techniques for the quality assurance of deep learning (DL) systems. One popular direction is deep learning testing, where adversarial examples (a.k.a.~bugs) of
In the field of software engineering, applying language models to the token sequence of source code is the state-of-art approach to build a code recommendation system. The syntax tree of source code has hierarchical structures. Ignoring the character
We present ASDiv (Academia Sinica Diverse MWP Dataset), a diverse (in terms of both language patterns and problem types) English math word problem (MWP) corpus for evaluating the capability of various MWP solvers. Existing MWP corpora for studying AI