ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly nonlinear magnetoelectric effect in antiferromagnetic Co4Ta2O9 single crystals

209   0   0.0 ( 0 )
 نشر من قبل Nara Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strongly correlated materials with multiple order parameters provide unique insights into the fundamental interactions in condensed matter systems and present opportunities for innovative technological applications. A class of antiferromagnetic honeycomb lattices compounds, A4B2O9 (A = Co, Fe, Mn; B = Nb, Ta), have been explored owing to the occurrence of linear magnetoelectricity. We observe a highly nonlinear magnetoelectric effect on single crystals of Co4Ta2O9 (CTO), distinctive from the linear behavior in the isostructural Co4Nb2O9. Ferroelectricity emerges primarily along the [110] direction under magnetic fields, with the onset of antiferromagnetic order at TN = 20.5 K. For in-plane magnetic field, a spin-flop occurs at HC ~ 0.3 T, above which the ferroelectric polarization gradually becomes negative and reaches a broad minimum. Upon increasing magnetic field further, the polarization crosses zero and increases continuously to ~60 uC/m2 at 9 T. In contrast, the polarization for a magnetic field perpendicular to the hexagonal plane increases monotonously and reaches ~80 uC/m2 at 9 T. This observation of a strongly nonlinear magnetoelectricity suggests that two types of inequivalent Co2+ sublattices generate magnetic field-dependent ferroelectric polarization with opposite signs. These results motivate fundamental and applied research on the intriguing magnetoelectric characteristics of these honeycomb lattice materials.



قيم البحث

اقرأ أيضاً

Co4Ta2O9 exhibits a three-dimensional magnetic lattice based on the buckled honeycomb motif. It shows unusual magnetoelectric effects, including the sign change and non-linearity. These effects cannot be understood without the detailed knowledge of t he magnetic structure. Herein, we report neutron diffraction and direction-dependent magnetic susceptibility measurements on Co4Ta2O9 single crystals. Below 20.3 K, we find a long-range antiferromagnetic order in the alternating buckled and flat honeycomb layers of Co2+ ions stacked along the c axis. Within experimental accuracy, the magnetic moments lie in the ab plane. They form a canted antiferromagnetic structure with a tilt angle of ~ 14 degrees at 15 K in the buckled layers, while the magnetic moments in each flat layer are collinear. This is directly evidenced by a finite (0, 0, 3) magnetic Bragg peak intensity, which would be absent in the collinear magnetic order. The magnetic space group is C2/c. It is different from the previously reported C2/c group, also found in the isostructural Co4Nb2O9. The revised magnetic structure successfully explains the major features of the magnetoelectric tensor of Co4Ta2O9 within the framework of the spin-flop model.
We report the discovery of linear magnetoelectric effect in the well-known green phase compound, Sm2BaCuO5, which crystallizes in the centrosymmetric orthorhombic (Pnma) structure. Magnetization and specific heat measurements reveal the long-range an tiferromagnetic ordering of Cu2+ and Sm3+-ions moments at TN1 = 23 K and TN2 = 5 K, respectively. Applied magnetic field induces dielectric anomaly at TN1 whose magnitude increases with field, which results in significant (1.7%) magnetocapacitance effect. On the other hand, the dielectric anomaly observed in zero-applied magnetic field at TN2 shows a small (0.4%) magnetocapacitance effect. Interestingly, applied magnetic field induces an electric polarization below TN1 and the polarization varies linearly up to the maximum applied field of 9 T with the magnetoelectric coefficient {alpha} ~ 4.4 ps/m, demonstrating high magnetoelectric coupling. Below TN2, the electric polarization decreases from 35 to 29 {mu}C/m2 at 2 K and 9 T due to ordering of Sm-sublattice. The observed linear magnetoelectricity in Sm2BaCuO5 is explained using symmetry analysis.
257 - O.B. Korneta , T. F. Qi , M. Ge 2010
Hexagonal perovskite 15R-BaMnO2.99 with a ratio of cubic to hexagonal layers of 1/5 in the unit cell is an antiferromagnetic insulator that orders at a Neel temperature TN = 220 K. Here we report structural, magnetic, dielectric and thermal propertie s of single crystal BaMnO2.99 and its derivatives BaMn0.97Li0.03O3 and Ba0.97K0.03MnO3. The central findings of this work are: (1) these materials possess a usually large, high-temperature magnetoelectric effect that amplifies the dielectric constant by more than an order of magnitude near their respective Neel temperature; (2) Li and K doping can readily vary the ratio of cubic to hexagonal layers and cause drastic changes in dielectric and magnetic properties; in particular, a mere 3% Li substitution for Mn significantly weakens the magnetic anisotropy and relaxes the lattice; consequently, the dielectric constant for both the a- and c-axis sharply rises to 2500 near the Neel temperature. This lattice softening is also accompanied by weak polarization. These findings provide a new paradigm for developing novel, high-temperature magnetoelectric materials that may eventually contribute to technology.
We present magnetodielectric measurements in single crystals of the cubic spin-1/2 compound Cu$_2$OSeO$_3$. A magnetic field-induced electric polarization ($vec{P}$) and a finite magnetocapacitance (MC) is observed at the onset of the magnetically or dered state ($T_c = 59$ K). Both $vec{P}$ and MC are explored in considerable detail as a function of temperature (T), applied field $vec{H}_a$, and relative field orientations with respect to the crystallographic axes. The magnetodielectric data show a number of anomalies which signal magnetic phase transitions, and allow to map out the phase diagram of the system in the $H_a$-T plane. Below the 3up-1down collinear ferrimagnetic phase, we find two additional magnetic phases. We demonstrate that these are related to the field-driven evolution of a long-period helical phase, which is stabilized by the chiral Dzyalozinskii-Moriya term $D vec{M} cdot(bs{ abla}timesvec{M})$ that is present in this non-centrosymmetric compound. We also present a phenomenological Landau-Ginzburg theory for the ME$_H$ effect, which is in excellent agreement with experimental data, and shows three novel features: (i) the polarization $vec{P}$ has a uniform as well as a long-wavelength spatial component that is given by the pitch of the magnetic helices, (ii) the uniform component of $vec{P}$ points along the vector $(H^yH^z, H^zH^x, H^xH^y)$, and (iii) its strength is proportional to $eta_parallel^2-eta_perp^2/2$, where $eta_parallel$ is the longitudinal and $eta_perp$ is the transverse (and spiraling) component of the magnetic ordering. Hence, the field dependence of P provides a clear signature of the evolution of a conical helix under a magnetic field. A similar phenomenological theory is discussed for the MC.
We study the magnetocapacitance (MC) effect and magnetoelectric (ME) coupling in spin-flop driven antiferromagnet Co4Ta2O9. The magnetocapacitance data at high magnetic fields are analyzed by phenomenological Ginzburg-landau theory of ferroelectromag nets and it is found that change in dielectric constant is proportional to the square of magnetization. The saturation polarization and magnetoelectric coupling are estimated to be 52microC/m2 and $gamma$ = 1.4 x10-3 (emu/g)-2 respectively at 6 Tesla. Electric polarization is achieved below Neel temperature only when the sample is cooled in the presence of magnetic field and it is established that the ground state is non-ferroelectric implying that magnetic lattice does not lead to spontaneous symmetry breaking in Co4Ta2O9.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا