ترغب بنشر مسار تعليمي؟ اضغط هنا

A Probabilistic Approach to Power System State Estimation using a Linear Algorithm

82   0   0.0 ( 0 )
 نشر من قبل Martin Wagner
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

An equivalent circuit formulation for power system analysis was demonstrated to improve robustness of Power Flow and enable more generalized modeling, including that for RTUs (Remote Terminal Units) and PMUs (Phasor Measurement Units). These measurement device models, together with an adjoint circuit based optimization framework, enable an alternative formulation to Power System State Estimation (SE) that can be solved within the equivalent circuit formulation. In this paper, we utilize a linear RTU model to create a fully linear SE algorithm that includes PMU and RTU measurements to enable a probabilistic approach to SE. Results demonstrate that this is a practical approach that is well suited for real-world applications.



قيم البحث

اقرأ أيضاً

Recent advances in power system State Estimation (SE) have included equivalent circuit models for representing measurement data that allows incorporation of both PMU and RTU measurements within the state estimator. In this paper, we introduce a proba bilistic framework with a new RTU model that renders the complete SE problem linear while not affecting its accuracy. It is demonstrated that the probabilistic state of a system can be efficiently and accurately estimated not only with the uncertainties from the measurement data, but also while including variations from transmission network models. To demonstrate accuracy and scalability we present probabilistic state estimation results for the 82k test case that represents the transmission level grid of the entire USA. It is shown that the estimated state distributions include the true grid state, while their mean exactly corresponds to the estimated deterministic state obtained from the nonlinear state estimator.
288 - Yan Yang , Juan Yu , Zhifang Yang 2019
Probabilistic optimal power flow (POPF) is an important analytical tool to ensure the secure and economic operation of power systems. POPF needs to solve enormous nonlinear and nonconvex optimization problems. The huge computational burden has become the major bottleneck for the practical application. This paper presents a deep learning approach to solve the POPF problem efficiently and accurately. Taking advantage of the deep structure and reconstructive strategy of stacked denoising auto encoders (SDAE), a SDAE-based optimal power flow (OPF) is developed to extract the high-level nonlinear correlations between the system operating condition and the OPF solution. A training process is designed to learn the feature of POPF. The trained SDAE network can be utilized to conveniently calculate the OPF solution of random samples generated by Monte-Carlo simulation (MCS) without the need of optimization. A modified IEEE 118-bus power system is simulated to demonstrate the effectiveness of the proposed method.
Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS), a novel VBpMKL-based transient stability assessment (TSA) method through multifeature fusion is proposed in this paper. First, a group of classificatio n features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.
Power system state estimation is heavily subjected to measurement error, which comes from the noise of measuring instruments, communication noise, and some unclear randomness. Traditional weighted least square (WLS), as the most universal state estim ation method, attempts to minimize the residual between measurements and the estimation of measured variables, but it is unable to handle the measurement error. To solve this problem, based on random matrix theory, this paper proposes a data-driven approach to clean measurement error in matrix-level. Our method significantly reduces the negative effect of measurement error, and conducts a two-stage state estimation scheme combined with WLS. In this method, a Hermitian matrix is constructed to establish an invertible relationship between the eigenvalues of measurements and their covariance matrix. Random matrix tools, combined with an optimization scheme, are used to clean measurement error by shrinking the eigenvalues of the covariance matrix. With great robustness and generality, our approach is particularly suitable for large interconnected power grids. Our method has been numerically evaluated using different testing systems, multiple models of measured noise and matrix size ratios.
Power system dynamic state estimation (DSE) remains an active research area. This is driven by the absence of accurate models, the increasing availability of fast-sampled, time-synchronized measurements, and the advances in the capability, scalabilit y, and affordability of computing and communications. This paper discusses the advantages of DSE as compared to static state estimation, and the implementation differences between the two, including the measurement configuration, modeling framework and support software features. The important roles of DSE are discussed from modeling, monitoring and operation aspects for todays synchronous machine dominated systems and the future power electronics-interfaced generation systems. Several examples are presented to demonstrate the benefits of DSE on enhancing the operational robustness and resilience of 21st century power system through time critical applications. Future research directions are identified and discussed, paving the way for developing the next generation of energy management systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا