ﻻ يوجد ملخص باللغة العربية
Beta-Ga2O3 has emerged as a promising candidate for electronic device applications because of its ultra-wide bandgap, high breakdown electric field, and large-area affordable substrates grown from the melt. However, its thermal conductivity is at least one order of magnitude lower than that of other wide bandgap semiconductors such as SiC and GaN. Thermal dissipation in electronics made from beta-Ga2O3 will be the bottleneck for real-world applications, especially for high power and high frequency devices. Similar to GaN/AlGaN interfaces, beta-(AlxGa1-x)2O3/Ga2O3 heterogeneous structures have been used to form a high mobility two-dimensional electron gas (2DEG) where joule heating is localized. The thermal properties of beta-(AlxGa1-x)2O3/Ga2O3 are the key for heat dissipation in these devices while they have not been studied before. This work reports the first measurement on thermal conductivity of beta-(Al0.1Ga0.9)2O3/Ga2O3 superlattices from 80 K to 480 K. Its thermal conductivity is significantly reduced (5.7 times reduction) at room temperature comparing with that of bulk Ga2O3. Additionally, the thermal conductivity of bulk Ga2O3 with (010) orientation is measured and found to be consistent with literature values regardless of Sn doping. We discuss the phonon scattering mechanism in these structures by calculating their inverse thermal diffusivity. By comparing the estimated thermal boundary conductance (TBC) of beta-(Al0.1Ga0.9)2O3/Ga2O3 interfaces and Ga2O3 maximum TBC, we reveal that some phonons in the superlattices transmit through several interfaces before scattering with other phonons or structural imperfections. This study is not only important for Ga2O3 electronics applications especially for high power and high frequency applications, but also for the fundamental thermal science of phonon transport across interfaces and in superlattices.
A comprehensive current-voltage (I-V) characterization is performed for three different Schottky contacts; Pt, Ni and Ti, to unintentionally doped (UID) {beta}-(Al0.19Ga0.81)2O3 grown by molecular beam epitaxy (MBE) on {beta}-Ga2O3 for temperatures r
We report on the growth and characterization of metalorganic vapor-phase epitaxy-grown b{eta}-(AlxGa1-x)2O3/b{eta}-Ga2O3 modulation-doped heterostructures. Electron channel is realized in the heterostructure by utilizing a delta-doped b{eta}-(AlxGa1-
We report on the first beta gallium oxide (beta-Ga2O3) crystal feedback oscillator built by employing a vibrating beta-Ga2O3 nanoresonator as the frequency reference for real-time middle ultraviolet (MUV) light detection. We fabricate suspended beta-
Beta gallium oxide (beta-Ga2O3) is an emerging ultrawide band gap (4.5 - 4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. beta-Ga2O3 thin films
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $beta$-