ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifting 1/4-BPS States on K3 and Mathieu Moonshine

225   0   0.0 ( 0 )
 نشر من قبل Ida G. Zadeh
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The elliptic genus of K3 is an index for the 1/4-BPS states of its sigma model. At the torus orbifold point there is an accidental degeneracy of such states. We blow up the orbifold fixed points using conformal perturbation theory, and find that this fully lifts the accidental degeneracy of the 1/4-BPS states with h=1. At a generic point near the Kummer surface the elliptic genus thus measures not just their index, but counts the actual number of these BPS states. We comment on the implication of this for symmetry surfing and Mathieu moonshine.

قيم البحث

اقرأ أيضاً

In this paper we address the following two closely related questions. First, we complete the classification of finite symmetry groups of type IIA string theory on $K3times mathbb R^6$, where Niemeier lattices play an important role. This extends earl ier results by including points in the moduli space with enhanced gauge symmetries in spacetime, or, equivalently, where the world-sheet CFT becomes singular. After classifying the symmetries as abstract groups, we study how they act on the BPS states of the theory. In particular, we classify the conjugacy classes in the T-duality group $O^+(Gamma^{4,20})$ which represent physically distinct symmetries. Subsequently, we make two conjectures regarding the connection between the corresponding twining genera of $K3$ CFTs and Conway and umbral moonshine, building upon earlier work on the relation between moonshine and the $K3$ elliptic genus.
We establish a framework for doing second order conformal perturbation theory for the symmetric orbifold Sym$^N(T^4)$ to all orders in $N$. This allows us to compute how 1/4-BPS states of the D1-D5 system on $AdS_3times S^3times T^4$ are lifted as we move away from the orbifold point. As an application we confirm a previous observation that in the large $N$ limit not all 1/4-BPS states that can be lifted do get lifted. This provides evidence that the supersymmetric index actually undercounts the number of 1/4-BPS states at a generic point in the moduli space.
Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a repres entation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing, i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.
Umbral moonshine connects the symmetry groups of the 23 Niemeier lattices with 23 sets of distinguished mock modular forms. The 23 cases of umbral moonshine have a uniform relation to symmetries of $K3$ string theories. Moreover, a supersymmetric ver tex operator algebra with Conway sporadic symmetry also enjoys a close relation to the $K3$ elliptic genus. Inspired by the above two relations between moonshine and $K3$ string theory, we construct a chiral CFT by orbifolding the free theory of 24 chiral fermions and two pairs of fermionic and bosonic ghosts. In this paper we mainly focus on the case of umbral moonshine corresponding to the Niemeier lattice with root system given by 6 copies of $D_4$ root system. This CFT then leads to the construction of an infinite-dimensional graded module for the umbral group $G^{D_4^{oplus 6}}$ whose graded characters coincide with the umbral moonshine functions. We also comment on how one can recover all umbral moonshine functions corresponding to the Niemeier root systems $A_5^{oplus 4}D_4$, $A_7^{oplus 2}D_5^{oplus 2}$ , $A_{11}D_7 E_6$, $A_{17}E_7$, and $D_{10}E_7^{oplus 2}$.
BPS quivers for N=2 SU(N) gauge theories are derived via geometric engineering from derived categories of toric Calabi-Yau threefolds. While the outcome is in agreement of previous low energy constructions, the geometric approach leads to several new results. An absence of walls conjecture is formulated for all values of N, relating the field theory BPS spectrum to large radius D-brane bound states. Supporting evidence is presented as explicit computations of BPS degeneracies in some examples. These computations also prove the existence of BPS states of arbitrarily high spin and infinitely many marginal stability walls at weak coupling. Moreover, framed quiver models for framed BPS states are naturally derived from this formalism, as well as a mathematical formulation of framed and unframed BPS degeneracies in terms of motivic and cohomological Donaldson-Thomas invariants. We verify the conjectured absence of BPS states with exotic SU(2)_R quantum numbers using motivic DT invariants. This application is based in particular on a complete recursive algorithm which determine the unframed BPS spectrum at any point on the Coulomb branch in terms of noncommutative Donaldson-Thomas invariants for framed quiver representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا