ﻻ يوجد ملخص باللغة العربية
Acoustic waves can serve as memory for optical information, however, acoustic phonons in the GHz regime decay on the nanosecond timescale. Usually this is dominated by intrinsic acoustic loss due to inelastic scattering of the acoustic waves and thermal phonons. Here we show a way to counteract the intrinsic acoustic decay of the phonons in a waveguide by resonantly reinforcing the acoustic wave via synchronized optical pulses. This scheme overcomes the previous constraints of phonon-based optical signal processing for light storage and memory. We experimentally demonstrate on-chip storage up to 40 ns, four times the intrinsic acoustic lifetime in the waveguide. We confirm the coherence of the scheme by detecting the phase of the delayed optical signal after 40 ns using homodyne detection. Through theoretical considerations we anticipate that this concept allows for storage times up to microseconds within realistic experimental limitations while maintaining a GHz bandwidth of the optical signal. The refreshed phonon-based light storage removes the usual bandwidth-delay product limitations of e.g. slow-light schemes.
Coherent phonon generation by optical pump-probe experiments has enabled the study of acoustic properties at the nanoscale in planar heterostructures, plasmonic resonators, micropillars and nanowires. Focalizing both pump and probe on the same spot o
Light storage in an optical fiber is an attractive component in quantum optical delay line technologies. Although silica-core optical fibers are excellent in transmitting broadband optical signals, it is challenging to tailor their dispersive propert
We demonstrate the use of the micro-Brillouin light scattering (micro-BLS) technique as a local temperature sensor for magnons in a Permalloy thin film and phonons in the glass substrate. A systematic shift in the frequencies of two thermally excited
We present a numerical scheme to study the dynamics of slow light and light storage in an electromagneticallyinduced- transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set of coupled Schr{o}dinger equat
We report the observation of low-frequency modes in the Raman spectra of thin-film superlattices of the high-temperature superconductor YBa$ _{2} $Cu$ _{3} $O$ _{7-delta} $ and various manganite perovskites. Our study shows that these modes are cause