ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray properties of two transient ULX candidates in galaxy NGC 7090

67   0   0.0 ( 0 )
 نشر من قبل Zhu Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zhu Liu




اسأل ChatGPT حول البحث

We report the X-ray data analysis of two transient ultraluminous X-ray sources (ULXs, hereafter X1 and X2) located in the nearby galaxy NGC 7090. While they were not detected in the 2004 XMM-Newton and 2005 Chandra observations, their 0.3-10 keV X-ray luminosities reached $>3times10^{39},mathrm{erg,s^{-1}}$ in later XMM-Newton or Swift observations, showing increases in flux by a factor of $>80$ and $>300$ for X1 and X2, respectively. X1 showed indications of spectral variability: at the highest luminosity, its X-ray spectra can be fitted with a powerlaw ($Gamma=1.55pm0.15$), or a multicolour disc model with $T_{mathrm{in}}=2.07^{+0.30}_{-0.23}$ keV; the X-ray spectrum became softer ($Gamma=2.67^{+0.69}_{-0.64}$), or cooler ($T_mathrm{in}=0.64^{+0.28}_{-0.17}$ keV) at lower luminosity. No strong evidence for spectral variability was found for X2. Its X-ray spectra can be fitted with a simple powerlaw model ($Gamma=1.61^{+0.55}_{-0.50}$), or a multicolour disc model ($1.69^{+1.17}_{-0.48}$ keV). A possible optical counterpart for X1 is revealed in HST imaging. No optical variability is found, indicating that the optical radiation may be dominated by the companion star. Future X-ray and optical observations are necessary to determine the true nature of the compact object.



قيم البحث

اقرأ أيضاً

We report on the discovery of a new, transient ultraluminous X-ray source (ULX) in the galaxy NGC 7090. This new ULX, which we refer to as NGC 7090 ULX3, was discovered via monitoring with $Swift$ during 2019-20, and to date has exhibited a peak lumi nosity of $L_{rm{X}} sim 6 times 10^{39}$ erg s$^{-1}$. Archival searches show that, prior to its recent transition into the ULX regime, ULX3 appeared to exhibit a fairly stable luminosity of $L_{rm{X}} sim 10^{38}$ erg s$^{-1}$. Such strong long-timescale variability may be reminiscent of the small population of known ULX pulsars, although deep follow-up observations with $XMM$-$Newton$ and $NuSTAR$ do not reveal any robust X-ray pulsation signals. Pulsations similar to those seen from known ULX pulsars cannot be completely excluded, however, as the limit on the pulsed fraction of any signal that remains undetected in these data is $lesssim$20%. The broadband spectrum from these observations is well modelled with a simple thin disc model, consistent with sub-Eddington accretion, which may instead imply a moderately large black hole accretor ($M_{rm{BH}} sim 40 ~ M_{odot}$). Similarly, though, more complex models consistent with the super-Eddington spectra seen in other ULXs (and the known ULX pulsars) cannot be excluded given the limited signal-to-noise of the available broadband data. The nature of the accretor powering this new ULX therefore remains uncertain.
We report the discovery of a third ULX in NGC 925 (ULX-3), detected in November 2017 by Chandra at a luminosity of $L_{rm X} = (7.8pm0.8)times10^{39}$ erg s$^{-1}$. Examination of archival data for NGC 925 reveals that ULX-3 was detected by Swift at a similarly high luminosity in 2011, as well as by XMM-Newton in January 2017 at a much lower luminosity of $L_{rm X} = (3.8pm0.5)times10^{38}$ erg s$^{-1}$. With an additional Chandra non-detection in 2005, this object demonstrates a high dynamic range of flux of factor >26. In its high-luminosity detections, ULX-3 exhibits a hard power-law spectrum with $Gamma=1.6pm0.1$, whereas the XMM-Newton detection is slightly softer, with $Gamma=1.8^{+0.2}_{-0.1}$ and also well-fitted with a broadened disc model. The long-term light curve is sparsely covered and could be consistent either with the propeller effect or with a large-amplitude superorbital period, both of which are seen in ULXs, in particular those with neutron star accretors. Further systematic monitoring of ULX-3 will allow us to determine the mechanism by which ULX-3 undergoes its extreme variability and to better understand the accretion processes of ULXs.
106 - A. Robba , C. Pinto , D. J. Walton 2021
It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by recent discovery of X-ray pulsations and relativistic winds. This work presents a follow up study of the sp ectral evolution over two decades of the pulsing ULX NGC 1313 X-2, in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. We have performed a spectral analysis over the canonical 0.3-10 keV energy band of all the high signal-to-noise XMM-Newton observations, and we have tested a number of different spectral models, which should approximate super-Eddington accretion discs. The baseline model consists of two thermal blackbody components with different temperatures plus an exponential cutoff powerlaw. In particular, the hotter and brighter thermal component describes the emission from the super-Eddington inner disc and the cutoff powerlaw the contribution from the accretion column of the neutron star. Instead, the cooler component describes the emission from the outer region of the disc close to the spherisation radius and the wind. The luminosity-temperature relation for the cool component follows a negative trend, which is not consistent with L$propto$T$^4$, as expected from a sub-Eddington thin disc of Shakura-Sunayev, nor with L$propto$T$^2$, as expected for advection-dominated disc, but would rather agree with a wind-dominated X-ray emitting region. Instead, the (L,T) relation for the hotter component is somewhere in between the first two theoretical scenarios. Our findings agree with the super-Eddington scenario and provide further detail on the disc structure. The source spectral evolution is qualitatively similar to that seen in NGC1313 X-1 and HolmbergIX X-1.
NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resem bles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ($(2$$-$$4)times10^{40}$ erg s$^{-1}$) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferentially occurs on $sim 5$ ks and $sim 10$ ks timescales. The dips can be caused by either the occultation of the central X-ray source by an optically thick structure, such as warping of the accretion disc, or from obscuration by a wind launched from the accretion disc, or both. This behaviour supports the idea that supersoft ULXs are viewed close to edge-on to the accretion disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا