ترغب بنشر مسار تعليمي؟ اضغط هنا

Astro2020 Science White Paper - Quasar Microlensing: Revolutionizing our Understanding of Quasar Structure and Dynamics

102   0   0.0 ( 0 )
 نشر من قبل Matthew O'Dowd Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microlensing by stars within distant galaxies acting as strong gravitational lenses of multiply-imaged quasars, provides a unique and direct measurement of the internal structure of the lensed quasar on nano-arcsecond scales. The measurement relies on the temporal variation of high-magnification caustic crossings which vary on timescales of days to years. Multiwavelength observations provide information from distinct emission regions in the quasar. Through monitoring of these strong gravitational lenses, a full tomographic view can emerge with Astronomical-Unit scale resolution. Work to date has demonstrated the potential of this technique in about a dozen systems. In the 2020s there will be orders of magnitude more systems to work with. Monitoring of lens systems for caustic-crossing events to enable triggering of multi-platform, multi-wavelength observations in the 2020s will fulfill the potential of quasar microlensing as a unique and comprehensive probe of active black hole structure and dynamics.

قيم البحث

اقرأ أيضاً

Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed properties of the known populations of white dwarfs in both interacting and detached binaries. Major limitations are that the existing population models have generally been developed to explain the properties of sub-samples of these systems, occupying small volumes of the vast parameter space, and that the observed samples are severely biased. The overarching goal for the next decade is to assemble a large and homogeneous sample of white dwarf binaries that spans the entire range of evolutionary states, to obtain precise measurements of their physical properties, and to further develop the theory to satisfactorily reproduce the properties of the entire population. While ongoing and future all-sky high- and low-resolution optical spectroscopic surveys allow us to enlarge the sample of these systems, high-resolution ultraviolet spectroscopy is absolutely essential for the characterization of the white dwarfs in these binaries. The Hubble Space Telescope is currently the only facility that provides ultraviolet spectroscopy, and with its foreseeable demise, planning the next ultraviolet mission is of utmost urgency.
163 - A. Bellini 2019
The outer regions of globular clusters can enable us to answer many fundamental questions concerning issues ranging from the formation and evolution of clusters and their multiple stellar populations to the study of stars near and beyond the hydrogen -burning limit and to the dynamics of the Milky Way. The outskirts of globular clusters are still uncharted territories observationally. A very efficient way to explore them is through high-precision proper motions of low-mass stars over a large field of view. The Wide Field InfraRed Survey Telescope (WFIRST) combines all these characteristics in a single telescope, making it the best observational tool to uncover the wealth of information contained in the clusters outermost regions.
84 - Alexander P. Ji 2019
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved st ars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
235 - Melissa Ness 2019
The next decade affords tremendous opportunity to achieve the goals of Galactic archaeology. That is, to reconstruct the evolutionary narrative of the Milky Way, based on the empirical data that describes its current morphological, dynamical, tempora l and chemical structures. Here, we describe a path to achieving this goal. The critical observational objective is a Galaxy-scale, contiguous, comprehensive mapping of the disks phase space, tracing where the majority of the stellar mass resides. An ensemble of recent, ongoing, and imminent surveys are working to deliver such a transformative stellar map. Once this empirical description of the dust-obscured disk is assembled, we will no longer be operationally limited by the observational data. The primary and significant challenge within stellar astronomy and Galactic archaeology will then be in fully utilizing these data. We outline the next-decade framework for obtaining and then realizing the potential of the data to chart the Galactic disk via its stars. One way to support the investment in the massive data assemblage will be to establish a Galactic Archaeology Consortium across the ensemble of stellar missions. This would reflect a long-term commitment to build and support a network of personnel in a dedicated effort to aggregate, engineer, and transform stellar measurements into a comprehensive perspective of our Galaxy.
The evolution of a star is driven by the physical processes in its interior making the theory of stellar structure and evolution the most crucial ingredient for not only stellar evolution studies, but any field of astronomy which relies on the yields along stellar evolution. High-precision time-series photometric data assembled by recent space missions revealed that current models of stellar structure and evolution show major shortcomings already in the two earliest nuclear burning phases, impacting all subsequent phases prior to the formation of the end-of-life remnant. This white paper focuses specifically on the transport of chemical elements and of angular momentum in the stellar structure and evolution models of stars born with convective core, as revealed by their gravity-mode oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا