ﻻ يوجد ملخص باللغة العربية
A function $f:[n_1]timesdotstimes[n_d]tomathbb{F}_2$ is a direct sum if it is of the form $fleft(a_1,dots,a_dright) = f_1(a_1)oplusdots oplus f_d (a_d),$ for some $d$ functions $f_i:[n_i]tomathbb{F}_2$ for all $i=1,dots, d$, and where $n_1,dots,n_dinmathbb{N}$. We present a $4$-query test which distinguishes between direct sums and functions that are far from them. The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on an agreement test which slightly generalizes the direct product test (Dinur, Steurer, 2014). In multiplicative $pm 1$ notation, our result reads as follows. A $d$-dimensional tensor with $pm 1$ entries is called a tensor product if it is a tensor product of $d$ vectors with $pm 1$ entries, or equivalently, if it is of rank $1$. The presented tests can be read as tests for distinguishing between tensor products and tensors that are far from being tensor products. We also present a different test, which queries the function at most $(d+2)$ times, but is easier to analyze.
In this work, we show the first worst-case to average-case reduction for the classical $k$-SUM problem. A $k$-SUM instance is a collection of $m$ integers, and the goal of the $k$-SUM problem is to find a subset of $k$ elements that sums to $0$. In t
The reassembling of a simple connected graph G = (V,E) is an abstraction of a problem arising in earlier studies of network analysis. The reassembling process has a simple formulation (there are several equivalent formulations) relative to a binary t
Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the cir
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others.
The incompressibility method is an elementary yet powerful proof technique. It has been used successfully in many areas. To further demonstrate its power and elegance we exhibit new simple proofs using the incompressibility method.