ﻻ يوجد ملخص باللغة العربية
In this paper, we develop an efficient lattice Boltzmann (LB) model for simulating immiscible incompressible $N$-phase flows $(N geq 2)$ based on the Cahn-Hilliard phase field theory. In order to facilitate the design of LB model and reduce the calculation of the gradient term, the governing equations of the $N$-phase system are reformulated, and they satisfy the conservation of mass, momentum and the second law of thermodynamics. In the present model, $(N-1)$ LB equations are employed to capture the interface, and another LB equation is used to solve the Navier-Stokes (N-S) equations, where a new distribution function for the total force is delicately designed to reduce the calculation of the gradient term. The developed model is first validated by two classical benchmark problems, including the tests of static droplets and the spreading of a liquid lens, the simulation results show that the current LB model is accurate and efficient for simulating incompressible $N$-phase fluid flows. To further demonstrate the capability of the LB model, two numerical simulations, including dynamics of droplet collision for four fluid phases and dynamics of droplets and interfaces for five fluid phases, are performed to test the developed model. The results show that the present model can successfully handle complex interactions among $N$ ($N geq 2$) immiscible incompressible flows.
In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Gali
In this brief report, a thermal lattice-Boltzmann (LB) model is presented for axisymmetric thermal flows in the incompressible limit. The model is based on the double-distribution-function LB method, which has attracted much attention since its emerg
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard D2Q9 lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression wo
We propose a multi-resolution strategy that is compatible with the lattice Greens function (LGF) technique for solving viscous, incompressible flows on unbounded domains. The LGF method exploits the regularity of a finite-volume scheme on a formally
In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations (NSEs) which are considered as the coupled convection-diffusion equations (C