ﻻ يوجد ملخص باللغة العربية
John Lesieutre constructed an example satisfying $kappa_sigma e kappa_ u$. This says that the proof of the inequalities in Theorems 1.3, 1.9, and Remark 3.8 in [O. Fujino, On subadditivity of the logarithmic Kodaira dimension, J. Math. Soc. Japan 69 (2017), no. 4, 1565--1581] is insufficient. We claim that some weaker inequalities still hold true and they are sufficient for various applications.
In this paper we will prove a uniformity result for the Iitaka fibration $f:X rightarrow Y$, provided that the generic fiber has a good minimal model and the variation of $f$ is zero or that $kappa(X)=rm{dim}(X)-1$.
We prove that the log canonical ring of a projective log canonical pair in Kodaira dimension two is finitely generated.
In this note, we apply the semi-ampleness criterion in Lemma 3.1 to prove many classical results in the study of abundance conjecture. As a corollary, we prove abundance for large Kodaira dimension depending only on [BCHM10].
The log canonical ring of a projective plt pair with the Kodaira dimension two is finitely generated.
We prove that the product of an Enriques surface and a very general curve of genus at least 1 does not satisfy the integral Hodge conjecture for 1-cycles. This provides the first examples of smooth projective complex threefolds of Kodaira dimension z