ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrigendum: On subadditivity of the logarithmic Kodaira dimension

81   0   0.0 ( 0 )
 نشر من قبل Osamu Fujino
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Osamu Fujino




اسأل ChatGPT حول البحث

John Lesieutre constructed an example satisfying $kappa_sigma e kappa_ u$. This says that the proof of the inequalities in Theorems 1.3, 1.9, and Remark 3.8 in [O. Fujino, On subadditivity of the logarithmic Kodaira dimension, J. Math. Soc. Japan 69 (2017), no. 4, 1565--1581] is insufficient. We claim that some weaker inequalities still hold true and they are sufficient for various applications.



قيم البحث

اقرأ أيضاً

133 - Xiaodong Jiang 2010
In this paper we will prove a uniformity result for the Iitaka fibration $f:X rightarrow Y$, provided that the generic fiber has a good minimal model and the variation of $f$ is zero or that $kappa(X)=rm{dim}(X)-1$.
74 - Haidong Liu 2019
We prove that the log canonical ring of a projective log canonical pair in Kodaira dimension two is finitely generated.
105 - Chuyu Zhou 2021
In this note, we apply the semi-ampleness criterion in Lemma 3.1 to prove many classical results in the study of abundance conjecture. As a corollary, we prove abundance for large Kodaira dimension depending only on [BCHM10].
We prove that the product of an Enriques surface and a very general curve of genus at least 1 does not satisfy the integral Hodge conjecture for 1-cycles. This provides the first examples of smooth projective complex threefolds of Kodaira dimension z ero for which the integral Hodge conjecture fails, and the first examples of non-algebraic torsion cohomology classes of degree 4 on smooth projective complex threefolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا