ﻻ يوجد ملخص باللغة العربية
Quantum computers capable of solving classically intractable problems are under construction, and intermediate-scale devices are approaching completion. Current efforts to design large-scale devices require allocating immense resources to error correction, with the majority dedicated to the production of high-fidelity ancillary states known as magic-states. Leading techniques focus on dedicating a large, contiguous region of the processor as a single magic-state distillation factory responsible for meeting the magic-state demands of applications. In this work we design and analyze a set of optimized factory architectural layouts that divide a single factory into spatially distributed factories located throughout the processor. We find that distributed factory architectures minimize the space-time volume overhead imposed by distillation. Additionally, we find that the number of distributed components in each optimal configuration is sensitive to application characteristics and underlying physical device error rates. More specifically, we find that the rate at which T-gates are demanded by an application has a significant impact on the optimal distillation architecture. We develop an optimization procedure that discovers the optimal number of factory distillation rounds and number of output magic states per factory, as well as an overall system architecture that interacts with the factories. This yields between a 10x and 20x resource reduction compared to commonly accepted single factory designs. Performance is analyzed across representative application classes such as quantum simulation and quantum chemistry.
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{ipi/4}|1>)/sqrt{2} produced a single
A set of stabilizer operations augmented by some special initial states known as magic states, gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introd
Magic-state distillation (or non-stabilizer state manipulation) is a crucial component in the leading approaches to realizing scalable, fault-tolerant, and universal quantum computation. Related to non-stabilizer state manipulation is the resource th
Magic state distillation protocols have a complicated non-linear nature. Analysis of protocols is therefore usually restricted to one-parameter families of states, which aids tractability. We show that if we lift this one-parameter restriction and em
Many proposals for fault-tolerant quantum computation require injection of magic states to achieve a universal set of operations. Some qubit states are above a threshold fidelity, allowing them to be converted into magic states via magic state distil