ﻻ يوجد ملخص باللغة العربية
The origin of the baryon asymmetry of the Universe (BAU) and the nature of dark matter are two of the most challenging problems in cosmology. We propose a scenario in which the gravitational collapse of large inhomogeneities at the quark-hadron epoch generates both the baryon asymmetry and dark matter in the form of primordial black holes (PBHs). This is due to the sudden drop in radiation pressure during the transition from a quark-gluon plasma to non-relativistic hadrons. The collapse to a PBH is induced by fluctuations of a light spectator scalar field in rare regions and is accompanied by the violent expulsion of surrounding material, which might be regarded as a sort of primordial supernova . The acceleration of protons to relativistic speeds provides the ingredients for efficient baryogenesis around the collapsing regions and its subsequent propagation to the rest of the Universe. This scenario naturally explains why the observed BAU is of order the PBH collapse fraction and why the baryons and dark matter have comparable densities. The predicted PBH mass distribution ranges from sub-solar to several hundred solar masses. This is compatible with current observational constraints and could explain the rate, mass and low spin of the black hole mergers detected by LIGO-Virgo. Future observations will soon be able to test this scenario.
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the line
We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework
We argue that primordial dark matter halos could be generated during radiation domination by long range attractive forces stronger than gravity. In this paper we derive the conditions under which these structures could dominate the dark matter conten
The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the reds