ﻻ يوجد ملخص باللغة العربية
Recently, the High Altitude Water Cherenkov (HAWC) collaboration reported the discovery of the TeV halo around the Geminga pulsar. The TeV emission is believed to originate from inverse Compton scattering of pulsar-injected electrons/positrons off cosmic microwave background photons. In the mean time, these electrons should inevitably radiate X-ray photons via the synchrotron radiation, providing a useful constraint on the magnetic field in the TeV halo. In this work, we analyse the data of XMM-Newton and Chandra, and obtain an upper limit for the diffuse X-ray flux in a region of $600$ around the Geminga pulsar, which is at a level of $lesssim 10^{-14}rm erg,cm^{-2}s^{-1}$. Through a numerical modelling on both the X-ray and the TeV observations assuming isotropic diffusion of injected electrons/positrons, we find the magnetic field inside the TeV halo is required to be $<1mu$G, which is significantly weaker than the typical magnetic field in the interstellar medium. The weak magnetic field together with the small diffusion coefficient inferred from HAWCs observation implies that the Bohm limit of particle diffusion may probably have been achieved in the TeV halo. We also discuss alternative possibilities for the weak X-ray emission, such as the hadronic origin of the TeV emission or a specific magnetic field topology, in which a weak magnetic field and a very small diffusion coefficient might be avoided.
The High Altitude Water Cherenkov (HAWC) telescope recently observed extended emission around the Geminga and PSR~B0656+14 pulsar wind nebulae (PWNe). These observations have been used to estimate cosmic-ray (CR) diffusion coefficients near the PWNe
The propagation of cosmic-ray electrons and positrons in the proximity of the Geminga pulsar is examined considering the transition from the quasi-ballistic, valid for the most recently injected particles, to the diffusive transport regime. For typic
Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding
Previous observations of the middle-aged pulsar Geminga with XMM-Newton and Chandra have shown an unusual pulsar wind nebula (PWN), with a 20 long central (axial) tail directed opposite to the pulsars proper motion and two 2 long, bent lateral (outer
A recent study by Posselt et al. (2017) reported the deepest X-ray investigation of the Geminga pulsar wind nebula (PWN) by using emph{Chandra X-ray Observatory}. In comparison with previous studies of this system, a number of new findings have been