ﻻ يوجد ملخص باللغة العربية
Recently we have reported the correct formulation of the hadron formation from the quarks and gluons by using the lattice QCD method at the zero temperature. Similarly we have also reported the correct formulation of the hadron formation from the thermalized quark-gluon plasma by using the lattice QCD method at the finite temperature. In this paper we extend this to non-equilibrium QCD and present the correct formulation of the hadron formation from the non-equilibrium quark-gluon plasma by using the closed time path integral formalism. Hadron formation from the non-equilibrium quark-gluon plasma is necessary to detect the quark-gluon plasma at RHIC and LHC.
The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN, and five large experiments ALICE, ATLAS, CMS,
Complete suppression of the heavy quarkonium due to the screening mechanism of the quark-gluon plasma is proposed in the literature to be a signature of the quark-gluon plasma detection at RHIC and LHC. However, since the heavy quarkonium $Upsilon$ p
A model of statistical quark-gluon plasma formation is considered.We look the dilepton production at critical temperature $T_{c}sim170 Mev $ and completely free out temperature $T=150 MeV$ with the initial temperature as $T_{0}=570,400 (250) MeV$. No
Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point c
Jets are a promising way to probe the non-equilibrium physics of quark-gluon plasma (QGP). We study how an out-of-equilibrium medium induces a jet particle to emit gluons. Evaluation of the emission rate is complicated by Weibel instabilities which l