ﻻ يوجد ملخص باللغة العربية
Classical extragradient schemes and their stochastic counterpart represent a cornerstone for resolving monotone variational inequality problems. Yet, such schemes have a per-iteration complexity of two projections onto a convex set and require two evaluations of the map, the former of which could be relatively expensive if $X$ is a complicated set. We consider two related avenues where the per-iteration complexity is significantly reduced: (i) A stochastic projected reflected gradient method requiring a single evaluation of the map and a single projection; and (ii) A stochastic subgradient extragradient method that requires two evaluations of the map, a single projection onto $X$, and a significantly cheaper projection (onto a halfspace) computable in closed form. Under a variance-reduced framework reliant on a sample-average of the map based on an increasing batch-size, we prove almost sure (a.s.) convergence of the iterates to a random point in the solution set for both schemes. Additionally, both schemes display a non-asymptotic rate of $mathcal{O}(1/K)$ where $K$ denotes the number of iterations; notably, both rates match those obtained in deterministic regimes. To address feasibility sets given by the intersection of a large number of convex constraints, we adapt both of the aforementioned schemes to a random projection framework. We then show that the random projection analogs of both schemes also display a.s. convergence under a weak-sharpness requirement; furthermore, without imposing the weak-sharpness requirement, both schemes are characterized by a provable rate of $mathcal{O}(1/sqrt{K})$ in terms of the gap function of the projection of the averaged sequence onto $X$ as well as the infeasibility of this sequence. Preliminary numerics support theoretical findings and the schemes outperform standard extragradient schemes in terms of the per-iteration complexity.
We consider monotone inclusion problems where the operators may be expectation-valued. A direct application of proximal and splitting schemes is complicated by resolving problems with expectation-valued maps at each step, a concern that is addressed
We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extragradient, forward-backward-forward, and forward-reflected-ba
In this paper, we consider non-convex stochastic bilevel optimization (SBO) problems that have many applications in machine learning. Although numerous studies have proposed stochastic algorithms for solving these problems, they are limited in two pe
We consider a stochastic variational inequality (SVI) problem with a continuous and monotone mapping over a closed and convex set. In strongly monotone regimes, we present a variable sample-size averaging scheme (VS-Ave) that achieves a linear rate w
This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of infinite dimensional Hilbert spaces. For this purpose, several inertial hybrid and shrinking projection algorithms are proposed under the