ﻻ يوجد ملخص باللغة العربية
The Andromeda (M31) and Triangulum (M33) galaxies are the closest Local Group galaxies to the Milky Way, being only 785 and 870 kpc away. These two galaxies provide an independent view of high-energy processes that are often obscured in our own Galaxy, including possible signals of dark matter (DM) particle interactions. The Fermi Large Area Telescope (Fermi-LAT) preliminary eight year list of sources includes both M31, which is detected as extended with a size of about 0.4$^circ$, and M33, which is detected as a point-like source. The spatial morphology of M31 $gamma$-ray emission could trace a population of unresolved sources and energetic particles originating in sources not related to massive star formation. Alternatively, the $gamma$-ray emission could also be an indication of annihilation or decay of DM particles. We investigate these two possibilities using almost 10 years of data from the Fermi LAT. An interpretation that involves only a DM $gamma$-ray emission is in tension with the current limits from other searches, such as those targeting Milky Way dwarf spheroidal galaxies. When we include a template of astrophysical emission, tuned on $gamma$-ray data or from observations of these galaxies in other wavelengths, we do not find any significant evidence for a DM contribution and we set limits for the annihilation cross section that probe the thermal cross section for DM masses up to a few tens of GeV in the $bbar{b}$ and $tau^+tau^-$ channels. For models where the DM substructures have masses above $10^{-6}$ solar masses our limits probe the DM interpretation of the Fermi LAT Galactic center excess. We provide also the lower limit for the DM decay time assuming the same spatial models of the DM distribution in M31 and M33.
The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect de
At a distance of 50 kpc and with a dark matter mass of $sim10^{10}$ M$_{odot}$, the Large Magellanic Cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated mo
During a core-collapse supernova (SN), axionlike particles (ALPs) could be produced through the Primakoff process and subsequently convert into $gamma$ rays in the magnetic field of the Milky Way. We do not find evidence for such a $gamma$-ray burst
Black holes with masses below approximately $10^{15}$ g are expected to emit gamma rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a
We use 7 years of electron and positron Fermi-LAT data to search for a possible excess in the direction of the Sun in the energy range from 42 GeV to 2 TeV. In the absence of a positive signal we derive flux upper limits which we use to constrain two