ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Class of Changing-Look LINERs

104   0   0.0 ( 0 )
 نشر من قبل Sara Frederick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of six active galactic nuclei (AGN) caught turning on during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as LINERs by weak narrow forbidden line emission in their archival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGN, reminiscent of the changing-look LINER iPTF 16bco. In one case, ZTF18aajupnt/AT2018dyk, follow-up HST UV and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 (NLS1) with strong [Fe VII, X, XIV] and He II 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks ~60 days later. Spitzer follow-up observations also detect a luminous mid-infrared flare implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.

قيم البحث

اقرأ أيضاً

We present the results of five NuSTAR observations of the type 2 active galactic nucleus (AGN) in IC 751, three of which were performed simultaneously with XMM-Newton or Swift/XRT. We find that the nuclear X-ray source underwent a clear transition fr om a Compton-thick ($N_{rm,H}simeq 2times 10^{24}rm,cm^{-2}$) to a Compton-thin ($N_{rm,H}simeq 4times 10^{23}rm,cm^{-2}$) state on timescales of $lesssim 3$ months, which makes IC 751 the first changing-look AGN discovered by NuSTAR. Changes of the line-of-sight column density at a $sim2sigma$ level are also found on a time-scale of $sim 48$ hours ($Delta N_{rm,H}sim 10^{23}rm,cm^{-2}$). From the lack of spectral variability on timescales of $sim 100$ ks we infer that the varying absorber is located beyond the emission-weighted average radius of the broad-line region, and could therefore be related either to the external part of the broad-line region or a clumpy molecular torus. By adopting a physical torus X-ray spectral model, we are able to disentangle the column density of the non-varying absorber ($N_{rm,H}sim 3.8times 10^{23}rm,cm^{-2}$) from that of the varying clouds [$N_{rm,H}sim(1-150)times10^{22}rm,cm^{-2}$], and to constrain that of the material responsible for the reprocessed X-ray radiation ($N_{rm,H} sim 6 times 10^{24}rm,cm^{-2}$). We find evidence of significant intrinsic X-ray variability, with the flux varying by a factor of five on timescales of a few months in the 2-10 and 10-50 keV band.
Blazars are active galactic nuclei with their relativistic jets pointing toward the observer, with two major sub-classes, the flat spectrum radio quasars and BL Lac objects. We present multi-wavelength photometric and spectroscopic monitoring observa tions of the blazar, B2 1420+32, focusing on its outbursts in 2018-2020. Multi-epoch spectra show that the blazar exhibited large scale spectral variability in both its continuum and line emission, accompanied by dramatic gamma-ray and optical variability by factors of up to 40 and 15, respectively, on week to month timescales. Over the last decade, the gamma-ray and optical fluxes increased by factors of 1500 and 100, respectively. B2 1420+32 was an FSRQ with broad emission lines in 1995. Following a series of flares starting in 2018, it transitioned between BL Lac and FSRQ states multiple times, with the emergence of a strong Fe pseudo continuum. Two spectra also contain components that can be modeled as single-temperature black bodies of 12,000 and 5,200 K. Such a collection of changing look features has never been observed previously in a blazar. We measure gamma-ray-optical and the inter-band optical lags implying emission region separations of less than 800 and 130 gravitational radii respectively. Since most emission line flux variations, except the Fe continuum, are within a factor of 2-3, the transitions between FSRQ and BL Lac classifications are mainly caused by the continuum variability. The large Fe continuum flux increase suggests the occurrence of dust sublimation releasing more Fe ions in the central engine and an energy transfer from the relativistic jet to sub-relativistic emission components.
The extragalactic $gamma$-rays sky observed by Fermi-Large Area Telescope (LAT) is dominated by blazars. In the fourth release of the Fermi-LAT Point Source Catalog (4FGL), are sources showing a multifrequency behavior similar to that of blazars but lacking an optical spectroscopic confirmation of their nature known as Blazar Candidate of Uncertain type (BCUs). We aim at confirming the blazar nature of BCUs and test if new optical spectroscopic observations can reveal spectral features, allowing us to get a redshift estimate for known BL Lac objects. We also aim to search for and discover changing-look blazars (i.e., blazars that show a different classification at different epochs). We carried out an extensive search for optical spectra available in the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Data Release 5 (DR5) archive. We selected sources out of the 4FGL catalog, the list of targets from our follow-up spectroscopic campaign of unidentified or unassociated $gamma$-ray sources, and the multifrequency catalog of blazars: the Roma-BZCAT. We selected a total of 392 spectra. We also compare some of the LAMOST spectra with those available in the literature. We classified 20 BCUs confirming their blazar-like nature. Then we obtained 15 new redshift estimates for known blazars. We discovered 26 transitional (i.e., changing-look) blazars that changed their classification. Finally, we were able to confirm the blazar-like nature of six BL Lac candidates. All remaining sources analyzed agree with previous classifications. BL Lac objects are certainly the most elusive type of blazars in the $gamma$-ray extragalactic sky.
147 - Jun Yang 2021
The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous inside-out multi-wavelength outburst in Spring 2013, and a dramatic Seyfert type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search f or the jet activity associated with this variable accretion activity, we carried out multi-resolution and multi-wavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about two parsecs in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of about 1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the inside-out outburst of 2013. Moreover, we report that most optically selected changing-look AGN at z<0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.
We present a study of optical, UV and X-ray light curves of the nearby changing look active galactic nucleus in the galaxy NGC 1566 obtained with the Neil Gehrels Swift Observatory and the MASTER Global Robotic Network over the period 2007 - 2018. We also report on our optical spectroscopy at the South African Astronomical Observatory with the 1.9-m telescope on the night 2018 August 2-3. A substantial increase in X-ray flux by 1.5 orders of magnitude was observed following the brightening in the UV and optical bands during the last year. After a maximum was reached at the beginning of 2018 July the fluxes in all bands decreased with some fluctuations. The amplitude of the flux variability is strongest in the X-ray band and decreases with increasing wavelength. Low-resolution spectra reveal a dramatic strengthening of the broad emission as well as high-ionization [FeX]6374 A lines. These lines were not detected so strongly in the past published spectra. The change in the type of the optical spectrum was accompanied by a significant change in the X-ray spectrum. All these facts confirm NGC 1566 to be a changing look Seyfert galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا