ﻻ يوجد ملخص باللغة العربية
Lehmann, Symanzik and Zimmermann (LSZ) proved a theorem showing how to obtain the S-matrix from time-ordered Green functions. Their result, the reduction formula, is fundamental to practical calculations of scattering processes. A known problem is that the operators that they use to create asymptotic states create much else besides the intended particles for a scattering process. In the infinite-time limits appropriate to scattering, the extra contributions only disappear in matrix elements with normalizable states, rather than in the created states themselves, i.e., the infinite-time limits of the LSZ creation operators are weak limits. The extra particles that are created are in a different region of space-time than the intended scattering process. To be able to work with particle creation at non-asymptotic times, e.g., to give a transparent and fully deductive treatment for scattering with long-lived unstable particles, it is necessary to have operators for which the infinite-time limits are strong limits. In this paper, I give an improved method of constructing such operators. I use them to give an improved systematic account of scattering theory in relativistic quantum field theories, including a new proof of the reduction formula. I make explicit calculations to illustrate the problems with the LSZ operators and their solution with the new operators. Not only do these verify the existence of the extra particles created by the LSZ operators and indicate a physical interpretation, but they also show that the extra components are so large that their contribution to the norm of the state is ultra-violet divergent in renormalizable theories. Finally, I discuss the relation of this work to the work of Haag and Ruelle on scattering theory.
We analyze in the Landau gauge mixing of bosonic fields in gauge theories with exact and spontaneously broken symmetries, extending to this case the Lehmann-Symanzik-Zimmermann (LSZ) formalism of the asymptotic fields. Factorization of residues of po
We point out that in theories where the gravitino mass, $M_{3/2}$, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electr
We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. We argue that this new m
A new procedure for the reduction of Carte du Ciel plates is presented. A typical Carte du Ciel plate corresponding to the Bordeaux zone has been taken as an example. It shows triple exposures for each object and the modelling of the data has been pe
In this paper, we provide a sufficient condition for a curve on a surface in $mathbb{R}^3$ to be given by an orthogonal intersection with a sphere. This result makes it possible to express the boundary condition entirely in terms of the Weierstrass d